• 1

    Buchholz HW, Engelbrecht H: Uber die depotwirkung einiger antibiotica bei vermischung mit dem kunstharz palacos. Chirurg 41: 511, 1970.

  • 2

    Miller R, McLaren A, Pauken C, et al: Voriconazole is delivered from antibiotic bone cements. Paper presented at: 21st Annual Meeting of the Musculoskeletal Infection Society of North America; August 5, 2011; Rochester, MN.

    • Search Google Scholar
    • Export Citation
  • 3

    Marra F, Robbins GM, Masri BA, et al: Amphotericin B-loaded bone cement to treat osteomyelitis caused by Candida albicans. Can J Surg 44: 383, 2001.

  • 4

    Pound MW, Townsend ML, Dimondi V, et al: Overview of treatment options for invasive fungal infections. Med Mycol 49: 561, 2011.

  • 5

    Stratov I, Korman TM, Johnson PD: Management of Aspergillus osteomyelitis: report of failure of liposomal amphotericin B and response to voriconazole in an immunocompetent host and literature review. Eur J Clin Microbiol Infect Dis 22: 277, 2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Pfaller MA, Yu WL: Antifungal susceptibility testing: new technology and clinical applications. Infect Dis Clin North Am 15: 1227, 2001.

  • 7

    Silverberg D, Kodali P, Dipersio J, et al: In vitro analysis of antifungal impregnated polymethylmethacrylate bone cement. Clin Orthop Relat Res 403: 228, 2002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Rouse MS, Heijink A, Steckelberg JM, et al: Are anidulafungin or voriconazole released from polymethylmethacrylate in vitro? Clin Orthop Relat Res 469: 1466, 2011.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Bruce AS, Kerry RM, Norman P, et al: Fluconazole-impregnated beads in the management of fungal infection of prosthetic joints. J Bone Joint Surg Br 83: 183, 2001.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Sealy PI, Nguyen C, Tucci M, et al: Delivery of antifungal agents using bioactive and nonbioactive bone cements. Ann Pharmacother 43: 1606, 2009.

  • 11

    Buranapanitkit B, Oungbho K, Ingviya N: The efficacy of hydroxyapatite composite impregnated with amphotericin B. Clin Orthop Relat Res 437: 236, 2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Wahlig H, Dingeldein E, Bergmann R, et al: The release of gentamycin from polymethylmethacrylate beads. J Bone Joint Surg Br 60: 270, 1978.

  • 13

    Hoff SF, Fitzgerald RH Jr, Kelly PJ: The depot administration of penicillin G and gentamycin in acrylic bone cement. J Bone Joint Surg Am 63: 798, 1981.

  • 14

    Haydon RC, Blaha JD, Mancinelli C, et al: Audiometric thresholds in osteomyelitis patients treated with gentamycin-impregnated methylmethacrylate beads (Septopal). Clin Orthop Relat Res 295: 43, 1993.

    • Search Google Scholar
    • Export Citation
  • 15

    Rauschmann MA, Wichelhaus TA, Stirnal V, et al: Nanocrystalline hydroxyapatite and calcium sulfate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials 26: 2677, 2005.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Chotanaphuti T, Surijamorn P, Luenam S, et al: In vitro antimicrobial activity of phramongkutklao hydroxyapatite antibiotic pellet. J Med Assoc Thai 91: 1868, 2008.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Mousset B, Benoit MA, Delloye C, et al: Biodegradable implants for potential use in bone infection: an in vitro study of antibiotic-loaded calcium sulphate. Inter Orthop 19: 157, 1995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Mackey D, Varlet A, Debeaumont D: Antibiotic loaded plaster of Paris pellets: an in vitro study of a possible method of local antibiotic therapy in bone infection. Clin Orthop Relat Res 167: 263, 1982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Nisson M, Wang JS, Wielanek KE, et al: Biodegradation and biocompatibility of a calcium sulphate-hydroxyapatite bone substitute. J Bone Joint Surg Br 86: 120, 2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20

    Hing KA, Best SM, Tanner KE, et al: Quantification of bone ingrowth within bone-derived porous hydroxyapatite implants of varying density. J Mater Sci Mater Med 10: 663, 1999.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Herbrecht R, Denning DW, Patterson TF, et al: Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 347: 408, 2002.

  • 22

    Grimsrud C, Raven RR, Fothergill AW, et al: The in vitro elution characteristics of antifungal-loaded PMMA bone cement and calcium sulfate bone substitute. Orthopedics 34: 378, 2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Beović B, Lejko-Zupanc T, Pretnar J: Sequential treatment of deep fungal infections with amphotericin B deoxycholate and amphotericin B colloidal dispersion. Eur J Clin Microbiol Infect Dis 16: 507, 1997.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Cohen BE: Amphotericin B toxicity and lethality: a tale of two channels. Int J Pharm 162: 95, 1998.

  • 25

    Harbarth S, Pestotnik SL, Lloyd JF, et al: The epidemiology of nephrotoxicity associated with conventional amphotericin B therapy. Am J Med 111: 528, 2001.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Inselmann G, Inselmann U, Heidermann HT: Amphotericin B and liver function. Eur J Int Med 13: 288, 2002.

  • 27

    Matar MJ, Ostrosky-Zeichner L, Paetznick VL, et al: Correlation between E-test, disk diffusion, and microdilution methods for antifungal susceptibility testing of fluconazole and voriconazole. Antimicrob Agents Chemother 47: 1647, 2003.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Fernandez-Torres B, Carrillo-Munoz A, Inza I, et al: Effect of culture medium on the disk diffusion method for determining antifungal susceptibilities of dermatophytes. Antimicrob Agents Chemother 50: 2222, 2006.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Scheven M: Susceptibility testing of yeasts to fluconazole by Etest and agar-diffusion disk test using the synthetic agar medium Mycoplate. Mycoses 45: 156, 2002.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Negri M, Henriques M, Svidzinski TI, et al: Correlation between Etest, disk diffusion, and microdilution methods for antifungal susceptibility testing of Candida species from infection and colonization. J Clin Lab Anal 23: 324, 2009.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Araujo R, Pina-Vaz C, Rodrigues AG: Susceptibility of environmental versus clinical strains of pathogenic Aspergillus. Int J Antimicrob Agents 29: 108, 2007.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

In Vitro Activity of Calcium Sulfate and Hydroxyapatite Antifungal Disks Loaded with Amphotericin B or Voriconazole in Consideration for Adjunctive Osteomyelitis Management

Jeffrey C. Karr Lakeland Regional Medical Center, Lakeland, FL.

Search for other papers by Jeffrey C. Karr in
Current site
Google Scholar
PubMed
Close
 DPM
and
Joseph Lauretta Lakeland Regional Medical Center, Lakeland, FL.

Search for other papers by Joseph Lauretta in
Current site
Google Scholar
PubMed
Close
 BS

Background

Regarding antibiotic-loaded cements, there is an abundant amount of literature regarding the antibacterial in vitro inhibitory and clinical applications for the treatment of osteomyelitis. The opposite can be said about literature regarding in vitro antifungal-loaded cement drug delivery for the treatment of fungal osteomyelitis.

Methods

Aspergillus fumigatus and Candida (ATCC 1023ATCC, Manassas, Virginia) were plated on antibiotic/antifungal-free plates. Voriconazole- and amphotericin B–impregnated calcium sulfate and hydroxyapatite (HA) disks, calcium sulfate + HA control disks, and control polymethylmethacrylate disks were laid separately onto plates separately inoculated with Aspergillus and Candida spp. The zones of inhibition obtained were measured in millimeters at 24, 36, and 96 hours.

Results

Etest (bioMérieux, Marcy l'Etoile, France) results demonstrated susceptibility of Aspergillus and Candida to amphotericin B and voriconazole. The zone of inhibition data demonstrated that voriconazole and amphotericin B retained their antifungal activity when mixed into the calcium sulfate + HA bone void filler and eluted at biologically effective antifungal concentrations over 96 hours.

Conclusions

The calcium sulfate + HA bone void filler is a biocompatible ceramic carrier vehicle that can successfully deliver the antifungal drugs voriconazole and amphotericin B in the adjunctive treatment of fungal osteomyelitis. It is a reliable strategy in the local delivery of antifungal drugs to an area of osteomyelitis.

Corresponding author: Jeffrey C. Karr, DPM, 5421 S Florida Ave, Lakeland, FL 33813. (E-mail: drkarrcoe@gmail.com)