Coughlin M. “Lesser Toe Deformities,” in Surgery of the Foot and Ankle, 8th Ed, edited by M Coughlin , R Mann, C Saltzman, p 363, Mosby, Philadelphia, 2007.
Granowitz S. Vainio K. Proximal interphalangeal joint arthrodesis in rheumatoid arthritis: a follow-up study of 122 operations. Acta Orthop Scand 37: 301, 1966.
Casterini R. Farsetti P. Tarantino U. et al: Arthrodesis of the toe joints with an intramedullary cannulated screw for correction of hammertoe deformity. Foot Ankle Int 25: 256, 2004.
Bennett GL. Kay DB. Sabatta J. First metatarsophalangeal joint arthrodesis: an evaluation of hardware failure. Foot Ankle Int 26: 593, 2005.
Guelfi M. Pantalone A. Daniel JC. et al: Arthrodesis of proximal inter-phalangeal joint for hammertoe: intramedullary device options. J Orthop Traumatol 16: 269, 2015.
Witt BL. Hyer CF. Treatment of hammertoe deformity using a one-piece intramedullary device: a case series. J Foot Ankle Surg 51: 450, 2012.
Scholl A. McCarty J. Scholl D. et al: Smart Toe® implant versus buried Kirschner wire for proximal interphalangeal joint arthrodesis: a comparative study. J Foot Ankle Surg 52: 580, 2013.
Paterson DC. Carter RF. Maxwell GM. et al: Electrical bone-growth stimulation in an experimental model of delayed union. Lancet 1: 1278, 1977.
Paterson DC. Hillier TM. Carter RF. et al: Experimental delayed union of the dog tibia and its use in assessing the effect of an electrical bone growth stimulator. Clin Orthop Relat Res 128: 340, 1977.
Paterson DC. Lewis GN. Cass CA. Treatment of delayed union and nonunion with an implanted direct current stimulator. Clin Orthop Relat Res 148: 117, 1980.
Li JK. Lin JC. Liu HC. et al: Comparison of ultrasound and electromagnetic field effects on osteoblast growth. Ultrasound Med Biol 32: 769, 2006.
Ryaby JT. Clinical effects of electromagnetic and electric fields on fracture healing. Clin Orthop Relat Res 355(suppl): S205, 1998.
Tsai MT. Chang WH. Chang K. et al: Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering. Bioelectromagnetics 28: 519, 2007.
Yang W. Huo XL. Song T. Effects of extremely low frequency pulsed electromagnetic field on different-derived osteoblast-like cells [in Chinese]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 25: 710, 2007.
Diniz P. Shomura K. Soejima K. et al: Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics 23: 398, 2002.
Panagopoulos DJ. Karabarbounis A. Margaritis LH. Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun 298: 95, 2002.
Yan JL. Zhou J. Ma HP. et al: Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia. Mol Cell Endocrinol 404: 132, 2015.
Chang K. Chang WH. Huang S. et al: Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor. J Orthop Res 23: 1308, 2005.
Chang K. Chang WH. Tsai MT. et al: Pulsed electromagnetic fields accelerate apoptotic rate in osteoclasts. Connect Tissue Res 47: 222, 2006.
Chen J. He HC. Xia QJ. et al: Effects of pulsed electromagnetic fields on the mRNA expression of RANK and CAII in ovariectomized rat osteoclast-like cell. Connect Tissue Res 51: 1, 2010.
Schwartz Z. Fisher M. Lohmann CH. et al: Osteoprotegerin (OPG) production by cells in the osteoblast lineage is regulated by pulsed electromagnetic fields in cultures grown on calcium phosphate substrates. Ann Biomed Eng 37: 437, 2009.
A case of a repaired failed toe arthrodesis is presented. A novel and previously unreported approach using a percutaneously placed Kirschner wire coupled with a pulsed electromagnetic field achieved healing of a painful pseudoarthrosis at 54 days. With a percutaneous technique, open debridement of the failed arthrodesis site can be avoided.