• 1

    Coughlin M. “Lesser Toe Deformities,” in Surgery of the Foot and Ankle, 8th Ed, edited by M Coughlin , R Mann, C Saltzman, p 363, Mosby, Philadelphia, 2007.

    • PubMed
    • Web of Science
    • Search Google Scholar
    • Export Citation
  • 2

    Granowitz S. Vainio K. Proximal interphalangeal joint arthrodesis in rheumatoid arthritis: a follow-up study of 122 operations. Acta Orthop Scand 37: 301, 1966.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Casterini R. Farsetti P. Tarantino U. et al: Arthrodesis of the toe joints with an intramedullary cannulated screw for correction of hammertoe deformity. Foot Ankle Int 25: 256, 2004.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Bennett GL. Kay DB. Sabatta J. First metatarsophalangeal joint arthrodesis: an evaluation of hardware failure. Foot Ankle Int 26: 593, 2005.

  • 5

    Guelfi M. Pantalone A. Daniel JC. et al: Arthrodesis of proximal inter-phalangeal joint for hammertoe: intramedullary device options. J Orthop Traumatol 16: 269, 2015.

    • Crossref
    • PubMed
    • Web of Science
    • Search Google Scholar
    • Export Citation
  • 6

    Witt BL. Hyer CF. Treatment of hammertoe deformity using a one-piece intramedullary device: a case series. J Foot Ankle Surg 51: 450, 2012.

    • Crossref
    • PubMed
    • Web of Science
    • Search Google Scholar
    • Export Citation
  • 7

    Scholl A. McCarty J. Scholl D. et al: Smart Toe® implant versus buried Kirschner wire for proximal interphalangeal joint arthrodesis: a comparative study. J Foot Ankle Surg 52: 580, 2013.

    • Crossref
    • PubMed
    • Web of Science
    • Search Google Scholar
    • Export Citation
  • 8

    Paterson DC. Carter RF. Maxwell GM. et al: Electrical bone-growth stimulation in an experimental model of delayed union. Lancet 1: 1278, 1977.

  • 9

    Paterson DC. Hillier TM. Carter RF. et al: Experimental delayed union of the dog tibia and its use in assessing the effect of an electrical bone growth stimulator. Clin Orthop Relat Res 128: 340, 1977.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Paterson DC. Lewis GN. Cass CA. Treatment of delayed union and nonunion with an implanted direct current stimulator. Clin Orthop Relat Res 148: 117, 1980.

  • 11

    Li JK. Lin JC. Liu HC. et al: Comparison of ultrasound and electromagnetic field effects on osteoblast growth. Ultrasound Med Biol 32: 769, 2006.

  • 12

    Ryaby JT. Clinical effects of electromagnetic and electric fields on fracture healing. Clin Orthop Relat Res 355(suppl): S205, 1998.

  • 13

    Tsai MT. Chang WH. Chang K. et al: Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering. Bioelectromagnetics 28: 519, 2007.

    • Crossref
    • PubMed
    • Web of Science
    • Search Google Scholar
    • Export Citation
  • 14

    Yang W. Huo XL. Song T. Effects of extremely low frequency pulsed electromagnetic field on different-derived osteoblast-like cells [in Chinese]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 25: 710, 2007.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Diniz P. Shomura K. Soejima K. et al: Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics 23: 398, 2002.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Panagopoulos DJ. Karabarbounis A. Margaritis LH. Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun 298: 95, 2002.

  • 17

    Yan JL. Zhou J. Ma HP. et al: Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia. Mol Cell Endocrinol 404: 132, 2015.

    • Crossref
    • PubMed
    • Web of Science
    • Search Google Scholar
    • Export Citation
  • 18

    Chang K. Chang WH. Huang S. et al: Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor. J Orthop Res 23: 1308, 2005.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Chang K. Chang WH. Tsai MT. et al: Pulsed electromagnetic fields accelerate apoptotic rate in osteoclasts. Connect Tissue Res 47: 222, 2006.

  • 20

    Chen J. He HC. Xia QJ. et al: Effects of pulsed electromagnetic fields on the mRNA expression of RANK and CAII in ovariectomized rat osteoclast-like cell. Connect Tissue Res 51: 1, 2010.

    • Crossref
    • PubMed
    • Web of Science
    • Search Google Scholar
    • Export Citation
  • 21

    Schwartz Z. Fisher M. Lohmann CH. et al: Osteoprotegerin (OPG) production by cells in the osteoblast lineage is regulated by pulsed electromagnetic fields in cultures grown on calcium phosphate substrates. Ann Biomed Eng 37: 437, 2009.

    • Crossref
    • PubMed
    • Web of Science
    • Search Google Scholar
    • Export Citation

Percutaneous Kirschner Wire Repair of Failed Digital Arthrodesis Using Pulsed Electromagnetic Field Therapy

A Case Report

Kyle M. L. Unsdorfer Northeast Ohio Medical University, Mayo Clinic Health Systems, Rootstown, OH.

Search for other papers by Kyle M. L. Unsdorfer in
Current site
Google Scholar
PubMed
Close
 MD
and
Samir M. Abdelmagid Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH.

Search for other papers by Samir M. Abdelmagid in
Current site
Google Scholar
PubMed
Close
 MD

A case of a repaired failed toe arthrodesis is presented. A novel and previously unreported approach using a percutaneously placed Kirschner wire coupled with a pulsed electromagnetic field achieved healing of a painful pseudoarthrosis at 54 days. With a percutaneous technique, open debridement of the failed arthrodesis site can be avoided.

Corresponding author: Kyle M. L. Unsdorfer, MD, Northeast Ohio Medical University, 4043 Pine Dr, Rootstown, OH 44272. (E-mail: kunsdorfer@neomed.edu)
Save