Peters EJ. Lipsky BA. Diagnosis and management of infection in the diabetic foot. Med Clin North Am 97: 911, 2013.
Walter G. Kemmerer M. Kappler C. et al: Treatment algorithms for chronic osteomyelitis. Dtsch Arztebl Int 109: 257, 2012.
Acharya S. Soliman M. Egun A. et al: Conservative management of diabetic foot osteomyelitis. Diabetes Res Clin Pract 101: e18, 2013.
Senneville E. Lombart A. Beltrand E. et al: Outcome of diabetic foot osteomyelitis treated nonsurgically: a retrospective cohort study. Diabetes Care 31: 637, 2008.
Game FL. Jeffcoate WJ. Primarily non-surgical management of osteomyelitis of the foot in diabetes. Diabetologia 51: 962, 2008.
Senneville E. Lombart A. Beltrand E. et al: Outcome of diabetic foot osteomyelitis treated nonsurgically: a retrospective cohort study. Diabetes Care 31: 637, 2008.
Lipsky BA. Berendt AR. Cornia PB. et al: Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis 54: 132, 2012.
Buchholz HW. Engelbrecht H. Depot effects of various antibiotics mixed with Palacos resins [in German]. Chirurg 41: 511, 1970.
Calhoun JH. Mader JT. Antibiotic beads in the management of surgical infections. Am J Surg 157: 443, 1898.
Cierny G III. Infected tibial nonunions (1981-1995): the evolution of change. Clin Orthop Relat Res 360: 97, 1999.
Mader JT. Mauro MD. Calhoun JH. Update on the diagnosis and management of osteomyelitis. Clin Podiatr Med Surg Infect Dis 13: 701, 1996.
Cierny G III. Surgical treatment of osteomyelitis. Plast Reconstr Surg 127(suppl 1): 190S, 2011.
Walenkamp GH. Kleijn LL. de Leeuw M. Osteomyelitis treated with gentamicin–PMMA beads: 100 patients followed for 1-12 years. Acta Orthop Scand 69: 518, 1998.
Blaha JD. Calhoun JH. Nelson CL. et al: Comparison of the clinical efficacy and tolerance of gentamicin PMMA beads on surgical wire versus combined and systemic therapy for osteomyelitis. Clin Orthop Related Res 295: 8, 1993.
Kanellakopoulou K. Giamarellos-Bourboulis EJ. Carrier systems for the local delivery of antibiotics in bone infections. Drugs 59: 1223, 2000.
Trombelli L. Heitz-Mayfield LJ. Needleman I. et al. A systematic review of graft materials and biologic agents for periodontal intraosseous defects. J Clin Periodontol 29(suppl 3): 117, 2002.
Pempinello C. Gennaro S. Giovanni S. et al: The efficacy of injectable biphasic calcium sulphate/hydroxyapatite bone substitute Cerament G in the treatment of severe bone infections. Poster presented at: the 34th Annual Meeting of the European Bone and Joint Infection Society, Estoril, Portugal, September 10–12, 2015.
Whisstock C. Ninkovic S. Marin M. et al: Use of a new antibiotic bone substitute to induce healing of osteomyelitis in the diabetic foot. Poster presented at: the 34th Annual Meeting of the European Bone and Joint Infection Society, Estoril, Portugal, September 10–12, 2015.
Dvorzhinskiy A. Perino G. Chojnowski M. et al. Cerament bone void filler with gentamicin increases bone formation and decreases detectable Infection in a rat model of debrided osteomyelitis. Poster presented at: the 34th Annual Meeting of the European Bone and Joint Infection Society, Estoril, Portugal, September 10–12, 2015.
McNally M. Ferguson J. Kendall M. A comparative study of three bioabsorbable antibiotic carriers in chronic osteomyelitis: 313 patients with a minimum 1 year follow-up. Poster presented at: the 34th Annual Meeting of the European Bone and Joint Infection Society, Estoril, Portugal, September 10–12, 2015.
Karr JC. An overview of the percutaneous antibiotic delivery technique for osteomyelitis treatment and a case study of calcaneal osteomyelitis. JAPMA 107: 511, 2017.
Karr JC. Lauretta J. Keriazes G. In vitro antimicrobial activity of calcium sulfate and hydroxyapatite (Cerament Bone Void Filler) discs using heat-sensitive and non-heat-sensitive antibiotics against methicillin resistant Staphylococcus aureus and Pseudomonas aeruginosa. JAPMA 101: 146, 2011.
Karr JC. Lauretta J. In vitro activity of calcium sulfate and hydroxyapatite antifungal disks loaded with amphotericin B or voriconazole for consideration for adjunctive osteomyelitis management. JAPMA 105: 104, 2015.
Centers for Disease Control and Prevention: National Diabetes Fact Sheet: General Information and National Estimates on Diabetes in the United States, 2005, US Department of Health and Human Services, Centers for Disease and Prevention, Atlanta, GA, 2005.
Faglia E. Clerici G. Caminiti M. et al: Influence of osteomyelitis location in the foot of diabetic patients with transtibial amputation. Foot Ankle Int 34: 222, 2013.
Cierny G III, Mader JT. Penninck JJ. A clinical staging system for adult osteomyelitis. Clin Orthop Relat Res 414: 7, 2003.
Roeder B. Van Gils CC. Maling S. Antibiotic beads in the treatment of diabetic pedal osteomyelitis. J Foot Ankle Surg 39: 124, 2000.
Gogia JS. Meehan JP. Di Cesare PE. et al: Local antibiotic therapy in osteomyelitis. Semin Plast Surg 23: 100, 2009.
Over a 74-month period (∼6 years), 143 lower-extremity osteomyelitis locations in 125 patients were treated with a calcium sulfate/hydroxyapatite liquid bone void filler with antibiotic(s).
The osteomyelitis locations were treated with a percutaneous antibiotic delivery technique delivering intraosseous antibiotic followed by either oral or intravenous antibiotics for 4 weeks.
There was no recurrence of osteomyelitis in 96.15% of the treatable patients. Outcomes classified by the Cierny-Mader clinical classification are discussed as well.
A bone void filler with antibiotic(s) using the percutaneous antibiotic delivery technique is a safe, reliable, and effective means to treat lower-extremity osteomyelitis with either oral or intravenous antibiotics for 4 weeks.