• 1

    Hohl TM, Rivera A, Pamer EG: Immunity to fungi. Curr Opin Immunol 18: 465, 2006.

  • 2

    Romani L: Immunity to fungal infections. Nat Rev Immunol 11: 275, 2011.

  • 3

    Rieber N, Singh A, Öz H, et al: Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells. Cell Host Microbe 17: 507, 2015.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Vázquez-González D, Perusquía-Ortiz AM, Hundeiker M, et al: Opportunistic yeast infections: candidiasis, cryptococcosis, trichosporonosis and geotrichosis. J Dtsch Dermatol Ges 11: 381, 2013.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Wüthrich M, Deepe GS, Klein B: Adaptive immunity to fungi. Annu Rev Immunol 30: 115, 2012.

  • 6

    Huang XZ, Liang PP, Ma H, et al: Effect of culture supernatant derived from Trichophyton rubrum grown in the nail medium on the innate immunity-related molecules of HaCaT. Chin Med J (Engl) 128: 3094, 2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    García-Romero MT, Arenas R: New insights into genes, immunity, and the occurrence of dermatophytosis. J Invest Dermatol 135: 655, 2015.

  • 8

    Rosen LB, Freeman AF, Yang LM, et al: Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. J Immunol 190: 3959, 2013.

  • 9

    Saijo T, Chen J, Chen SC, et al: Anti-granulocyte-macrophage colony-stimulating factor autoantibodies are a risk factor for central nervous system infection by Cryptococcus gattii in otherwise immunocompetent patients. MBio 5: e00912, 2014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Borghi M, Renga G, Puccetti M, et al: Antifungal Th immunity: growing up in family. Front Immunol 5: 506, 2014.

  • 11

    Bacher P, Kniemeyer O, Schönbrunn A, et al: Antigen-specific expansion of human regulatory T cells as a major tolerance mechanism against mucosal fungi. Mucosal Immunol 7: 916, 2014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Romani L, Puccetti P: Protective tolerance to fungi: the role of IL-10 and tryptophan catabolism. Trends Microbiol 14: 183, 2006.

  • 13

    Gazit R, Hershko K, Ingbar A, et al: Immunological assessment of familial tinea corporis. J Eur Acad Dermatol Venereol 22: 871, 2008.

  • 14

    Mochizuki T, Kobayashi H, Takeda K, et al: The first human cases of Americano-European race of Arthroderma benhamiae infection in Japan. Jpn J Infect Dis 65: 558, 2012.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Zheng XF, Hong YX, Feng GJ, et al: Lipopolysaccharide-induced M2 to M1 macrophage transformation for IL-12p70 production is blocked by Candida albicans mediated up-regulation of EBI3 expression. PloS One 8: e63967, 2013.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Gupta A, Daigle D, Carviel J: The role of biofilms in onychomycosis. J Am Acad Dermatol 74: 1241, 2016.

  • 17

    Gupta AK, Carviel J, Shear NH: Onychomycosis and chronic fungal disease: exploiting a commensal disguise to stage a covert invasion. J Cutan Med Surg 22: 318, 2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Calderon RA: Immunoregulation of dermatophytosis. Crit Rev Microbiol 16: 339, 1989.

  • 19

    Lanternier F, Cypowyj S, Picard C, et al: Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr 25: 736, 2013.

  • 20

    Dorschner RA, Lopez-Garcia B, Massie J, et al: Innate immune defense of the nail unit by antimicrobial peptides. J Am Acad Dermatol 50: 343, 2004.

  • 21

    Mercer DK, Sairi T, Sroka E, et al: Expression of innate immune defence genes in healthy and onychomycotic nail and stratum corneum. Br J Dermatol 177: 279, 2017.

  • 22

    Brasch J: Current knowledge of host response in human tinea. Mycoses 52: 304, 2009.

  • 23

    Gupta AK, Daigle D, Foley KA: The prevalence of culture-confirmed toenail onychomycosis in at-risk patient populations. J Eur Acad Dermatol Venereol 29: 1039, 2015.

  • 24

    Akkus G, Evran M, Gungor D, et al: Tinea pedis and onychomycosis frequency in diabetes mellitus patients and diabetic foot ulcers: a cross sectional-observational study. Pak J Med Sci 32: 891, 2016.

    • Search Google Scholar
    • Export Citation
  • 25

    Macura AB, Macura-Biegun A, Pawlik B: Susceptibility to fungal infections of nails in patients with primary antibody deficiency. Comp Immunol Microbiol Infect Dis 26: 223, 2003.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Romani L, Zelante T, Palmieri M, et al: The cross-talk between opportunistic fungi and the mammalian host via microbiota's metabolism. Semin Immunopathol 37: 163, 2015.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Martins N, Ferreira IC, Barros L, et al: Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 177: 223, 2014.

  • 28

    Longo AV, Burrowes PA, Zamudio KR: Genomic studies of disease-outcome in host–pathogen dynamics. Integr Comp Biol 54: 427, 2014.

  • 29

    De Luca A, Carvalho A, Cunha C, et al: IL-22 and IDO1 affect immunity and tolerance to murine and human vaginal candidiasis. PLoS Pathog 9: e1003486, 2013.

  • 30

    Zhang YJ, Reddy MC, Ioerger TR, et al: Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155: 1296, 2013.

  • 31

    Romani L, Zelante T, De Luca A, et al: Microbiota control of a tryptophan-AhR pathway in disease tolerance to fungi. Eur J Immunol 44: 3192, 2014.

  • 32

    Smeekens SP, Huttenhower C, Riza A, et al: Skin microbiome imbalance in patients with STAT1/STAT3 defects impairs innate host defense responses. J Innate Immun 6: 253, 2014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Sterkel AK, Lorenzini JL, Fites JS, et al: Fungal mimicry of a mammalian aminopeptidase disables innate immunity and promotes pathogenicity. Cell Host Microbe 19: 361, 2016.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Rappleye CA, Goldman WE: Fungal stealth technology. Trends Immunol 29: 18, 2008.

  • 35

    Bonifazi P, D'Angelo C, Zagarella S, et al: Intranasally delivered siRNA targeting PI3K/Akt/mTOR inflammatory pathways protects from aspergillosis. Mucosal Immunol 3: 193, 2010.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Bonifazi P, Zelante T, D'Angelo C, et al: Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunol 2: 362, 2009.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Kaya TI, Eskandari G, Guvenc U, et al: CD4+CD25+ Treg cells in patients with toenail onychomycosis. Arch Dermatol Res 301: 725, 2009.

  • 38

    Gupta AK, Simpson FC, Brintnell WC: Do genetic mutations and genotypes contribute to onychomycosis? Dermatol Basel Switz 228: 207, 2014.

  • 39

    Slesiona S, Gressler M, Mihlan M, et al: Persistence versus escape: Aspergillus terreus and Aspergillus fumigatus employ different strategies during interactions with macrophages. PloS One 7: e31223, 2012.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Ellison AR, Savage AE, DiRenzo GV, et al: Fighting a losing battle: vigorous immune response countered by pathogen suppression of host defenses in the chytridiomycosis-susceptible frog Atelopus zeteki. G3 (Bethesda) 4: 1275, 2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Meng Q, Yu HY, Zhang H, et al: Transcriptomic insight into the immune defenses in the ghost moth, Hepialus xiaojinensis, during an Ophiocordyceps sinensis fungal infection. Insect Biochem Mol Biol 64: 1, 2015.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Fujikawa T, Sakaguchi A, Nishizawa Y, et al: Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog 8: e1002882, 2012.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Read AF, Graham AL, Råberg L: Animal defenses against infectious agents: is damage control more important than pathogen control. PLoS Biol 6: e4, 2008.

  • 44

    Schneider DS, Ayres JS: Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol 8: 889, 2008.

  • 45

    Restif O, Koella JC: Concurrent evolution of resistance and tolerance to pathogens. Am Nat 164: E90, 2004.

  • 46

    Hau CS, Tada Y, Kanda N, et al: Immunoresponses in dermatomycoses. J Dermatol 42: 236, 2015.

  • 47

    Monari C, Casadevall A, Retini C, et al: Antibody to capsular polysaccharide enhances the function of neutrophils from patients with AIDS against Cryptococcus neoformans. AIDS 13: 653, 1999.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Nosanchuk J, Steenbergen J, Shi L, et al: Antibodies to a cell surface histone-like protein protect against Histoplasma capsulatum. J Clin Invest 112: 1164, 2003.

  • 49

    Zielinski CE: Microbe driven T-helper cell differentiation: lessons from Candida albicans and Staphylococcus aureus. Exp Dermatol 23: 795, 2014.

A Stealthy Fungal Attack Requires an Equally Clandestine Approach to Onychomycosis Treatment

Aditya K. Gupta MD, PhD, FRCP(C)1,2, Jessie Carviel PhD1, and Neil H. Shear MD, FRCPC2,3
View More View Less
  • 1 Mediprobe Research, Inc, London, Ontario, Canada.
  • | 2 Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, Canada.
  • | 3 Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
Restricted access

Onychomycosis is a chronic fungal infection of the nail that is recalcitrant to treatment. It is unclear why normally effective antifungal therapy results in low cure rates. Evidence suggests that there may be a plethora of reasons that include the limited immune presence in the nail, reduced circulation, presence of commensal microbes, and fungal influence on immune signaling. Therefore, treatment should be designed to address these possibilities and work synergistically with both the innate and adaptive immune responses.

Corresponding author: Aditya K. Gupta, MD, PhD, FRCP(C), Mediprobe Research, Inc, 645 Windermere Rd, London, Ontario N5X 2P1, Canada. (E-mail: AGupta@mediproberesearch.com)