• 1. 

    Root ML , Orien WP & Weed JH et al.: Biomechanical Examination of the Foot, Clinical Biomechanics Corp, Los Angeles, CA, 1971.

  • 2. 

    Woodbury MG , Sibbald RG & Ostrow B et al.: Tool for rapid & easy identification of high risk diabetic foot: validation & clinical pilot of the simplified 60 second diabetic foot screening tool. PLoS One 10 : e1025578, 2015.

    • Search Google Scholar
    • Export Citation
  • 3. 

    Feng Y , Schlösser FJ & Sumpio BE: The Semmes Weinstein monofilament examination as a screening tool for diabetic peripheral neuropathy. J Vasc Surg 50 : 675, 2009.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4. 

    Dros J , Wewerinke A & Bindels PJ et al.: Accuracy of monofilament testing to diagnose peripheral neuropathy: a systematic review. Ann Fam Med 7 : 555, 2009.

  • 5. 

    Crawford F , Cezard G & Chappell FM et al.: A systematic review and individual patient data meta-analysis of prognostic factors for foot ulceration in people with diabetes: the international research collaboration for the prediction of diabetic foot ulcerations (PODUS). Health Technol Assess 19 : 1, 2015.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6. 

    Parsons SL , Mansfield A & Inness EL et al.: The relationship of plantar cutaneous sensation and standing balance post-stroke. Top Stroke Rehabil 23 : 326, 2016.

  • 7. 

    Fuller EA: The windlass mechanism of the foot. A mechanical model to explain pathology. JAPMA 90 : 35, 2000.

  • 8. 

    Rush SM , Christensen JC & Johnson CH: Biomechanics of the first ray. Part II: metatarsus primus varus as a cause of hypermobility. A three-dimensional kinematic analysis in a cadaver model. J Foot Ankle Surg 39 : 68, 2000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. 

    Halstead J & Redmond AC: Weight-bearing passive dorsiflexion of the hallux in standing is not related to hallux dorsiflexion during walking. J Orthop Sports Phys Ther 36 : 550, 2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. 

    Gatt A , Mifsud T & Chockalingam N: Severity of pronation and classification of first metatarsophalangeal joint dorsiflexion increases the validity of the Hubscher manoeuvre for the diagnosis of functional hallux limitus. Foot (Edinb) 24 : 62, 2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. 

    Banwell HA , Paris ME & Mackintosh S et al.: Paediatric flexible flat foot: how are we measuring it and are we getting it right? A systematic review. J Foot Ankle Res 11 : 21, 2018.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12. 

    Greisberg J , Prince D & Sperber L: First ray mobility increase in patients with metatarsalgia. Foot Ankle Int 31 : 954, 2010.

  • 13. 

    Glasoe WM , Allen MK & Saltzman CL et al.: Comparison of two methods used to assess first-ray mobility. Foot Ankle Int 23 : 248, 2002.

  • 14. 

    Shirk C , Sandrey MA & Erickson M: Reliability of first ray position and mobility measurements in experienced and inexperienced examiners. J Athl Train 41 : 93, 2006.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15. 

    Fraser JJ , Koldenhoven RM & Saliba SA et al.: Reliability of the ankle-foot morphology, mobility, strength, and motor performance measures. Int J Sports Phys Ther 12 : 1134, 2017.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16. 

    Van Gheluwe B , Kirby KA & Roosen P et al.: Reliability and accuracy of biomechanical measurements of the lower extremities. JAPMA 92 : 317, 2002.

    • Search Google Scholar
    • Export Citation
  • 17. 

    Cornwall MW , Fishco WD & McPoil TG et al.: Reliability and validity of clinically assessing first-ray mobility of the foot. JAPMA 94 : 470, 2004.

    • Search Google Scholar
    • Export Citation
  • 18. 

    Glasoe WM , Grebing BR & Beck S et al.: A comparison of device measures of dorsal first ray mobility. Foot Ankle Int 26 : 957, 2005.

  • 19. 

    Glasoe WM , Getsoian S & Myers M et al.: Criterion-related validity of a clinical measure of dorsal first ray mobility. J Orthop Sports Phys Ther 35 : 589, 2005.

  • 20. 

    Jarvis HL , Nester CJ & Jones RK et al.: Inter-assessor reliability of practice based biomechanical assessment of the foot and ankle. J Foot Ankle Res 5 : 14, 2012.

  • 21. 

    Goto A , Moritomo H & Itohara T et al.: Three-dimensional in vivo kinematics of the subtalar joint during dorsi-plantarflexion and inversion-eversion. Foot Ankle Int 30 : 432, 2009.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22. 

    Kirby KA: Methods for determination of positional variations in the subtalar joint axis. JAPMA 77 : 228, 1987.

  • 23. 

    Kirby KA: Rotational equilibrium across the subtalar joint axis. JAPMA 79 : 1, 1989.

  • 24. 

    Kirby KA: Subtalar joint axis location and rotational equilibrium theory of foot function. JAPMA 91 : 465, 2001.

  • 25. 

    De Schepper J , Van Alsenoy K & Rijckaert J et al.: Intratest reliability in determining the subtalar joint axis using the palpation technique described by K. Kirby. JAPMA 102 : 122, 2012.

    • Search Google Scholar
    • Export Citation
  • 26. 

    Van Alsenoy KK , De Schepper J & Santos D et al.: The subtalar joint axis palpation technique—part 1: validating a clinical mechanical model. JAPMA 104 : 238, 2014.

    • Search Google Scholar
    • Export Citation
  • 27. 

    Van Alsenoy KK , D'Août K & Vereecke EE et al.: The subtalar joint axis palpation technique part 2: reliability and validity results using cadaver feet. JAPMA 104 : 365, 2014.

    • Search Google Scholar
    • Export Citation
  • 28. 

    Chen YX , Yu GR & Mei J et al.: Assessment of subtalar joint neutral position: a cadaveric study. Chin Med J (Engl) 121 : 735, 2008.

  • 29. 

    Elveru RA , Rothstein JM & Lamb RL: Goniometric reliability in a clinical setting. Subtalar and ankle joint measurements. Phys Ther 68 : 672, 1988.

  • 30. 

    Elveru RA , Rothstein JM & Lamb RL et al.: Methods for taking subtalar joint measurements. A clinical report. Phys Ther 68 : 678, 1988.

  • 31. 

    Smith-Oricchio K & Harris BA: Interrater reliability of subtalar neutral, calcaneal inversion and eversion. J Orthop Sports Phys Ther 12 : 10, 1990.

  • 32. 

    Picciano AM , Rowlands MS & Worrell T: Reliability of open and closed kinetic chain subtalar joint neutral positions and navicular drop test. J Orthop Sports Phys Ther 18 : 553, 1993.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33. 

    Sell KE , Verity TM & Worrell TW et al.: Two measurement techniques for assessing subtalar joint position: a reliability study. J Orthop Sports Phys Ther 19 : 162, 1994.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34. 

    Haight HJ , Dahm DL & Smith J et al.: Measuring standing hindfoot alignment: reliability of goniometric and visual measurements. Arch Phys Med Rehabil 86 : 571, 2005.

  • 35. 

    Menadue C , Raymond J & Kilbreath SL et al.: Reliability of two goniometric methods of measuring active inversion and eversion range of motion at the ankle. BMC Musculoskelet Disord 7 : 60, 2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. 

    Keenan AM & Bach TM: Clinicians' assessment of the hindfoot: a study of reliability. Foot Ankle Int 27 : 451, 2006.

  • 37. 

    Hagen M , Lemke M & Paszota L: Reliability of two goniometric methods for measuring active subtalar range of motion. Technol Health Care 23 : 323, 2015.

  • 38. 

    Houck JR , Tome JM & Nawoczenski DA: Subtalar neutral position as an offset for a kinematic model of the foot during walking. Gait Posture 28 : 29, 2008.

  • 39. 

    Pierrynowski MR , Smith SB & Mlynarczyk JH: Proficiency of foot care specialists to place the rearfoot at subtalar neutral. JAPMA 86 : 217, 1996.

    • Search Google Scholar
    • Export Citation
  • 40. 

    Di Stasio G: Ortesi digitali ortoplastie digito-metatarsali con funzione protettiva, correttiva, accomodativa, sostitutiva, di riallineamento e funzionale. Podologia Evidence Based, Podos Logo Italia, Napoli, 2014. Available at: http://web.mclink.it/MC7400/volume3Ortoplastie.pdf. Accessed December 8, 2018.

    • Search Google Scholar
    • Export Citation
  • 41. 

    Johanson MA , Greenfeld L & Hung C et al.: The relationship between forefoot and rearfoot static alignment in pain-free individuals with above-average forefoot varus angles. Foot Ankle Spec 3 : 112, 2010.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42. 

    Monaghan GM , Hsu WH & Lewis CL et al.: Forefoot angle at initial contact determines the amplitude of forefoot and rearfoot eversion during running. Clin Biomech (Bristol, Avon) 29 : 936, 2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. 

    Monaghan GM , Hsu WH & Lewis CL et al.: Forefoot angle determines duration and amplitude of pronation during walking. Gait Posture 38 : 8, 2013.

  • 44. 

    Silva RS , Ferreira AL & Veronese LM et al.: Forefoot varus predicts subtalar hyperpronation in young people. JAPMA 104 : 594, 2014.

  • 45. 

    Karthikeyan G , Jayraj SJ & Narayanan V: Effect of forefoot type on postural stability: a cross sectional comparative study. Int J Sports Phys Ther 10 : 213, 2015.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46. 

    De Michelis Mendonça L , Bittencourt NF , Amaral GM et al.: A quick and reliable procedure for assessing foot alignment in athletes. JAPMA 103 : 405, 2013.

    • Search Google Scholar
    • Export Citation
  • 47. 

    Di Stasio G: Lesioni Ulcerative Prevenzione, trattamento e riabilitazione. Podologia Evidence Based, Podos Logo Italia, Napoli 2017. Available at: http://web.mclink.it/MC7400/VolumeLesioniulcerativemicrocampus.pdf. Accessed December 8, 2018.

    • Search Google Scholar
    • Export Citation
  • 48. 

    Somers DL , Hanson JA & Kedzierski CM et al.: The influence of experience on the reliability of goniometric and visual measurement of forefoot position. J Orthop Sports Phys Ther 25 : 192, 1997.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49. 

    Evans EL & Catanzariti AR: Forefoot supinatus. Clin Podiatr Med Surg 31 : 405, 2014.

  • 50. 

    Powden CJ , Hoch JM & Hoch MC: Reliability and minimal detectable change of the weight-bearing lunge test: a systematic review. Man Ther 20 : 524, 2015.

  • 51. 

    Wagenaar R , Keogh JW & Taylor D: Development of a clinical multiple-lunge test to predict falls in older adults. Arch Phys Med Rehabil 93 : 458, 2012.

  • 52. 

    Tong JW & Kong PW: Association between foot type and lower extremity injuries: systematic literature review with meta-analysis. J Orthop Sports Phys Ther 43 : 700, 2013.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53. 

    McLaughlin P , Vaughan B & Shanahan J et al.: Inexperienced examiners and the Foot Posture Index: a reliability study. Man Ther 26 : 238, 2016.

  • 54. 

    Langley B , Cramp M & Morrison SC: Clinical measures of static foot posture do not agree. J Foot Ankle Res 9 : 45, 2016.

  • 55. 

    Terada M , Wittwer AM & Gribble PA: Intra-rater and inter-rater reliability of the five image-based criteria of the foot posture index-6. Int J Sports Phys Ther 9 : 187, 2014.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56. 

    Thomas MJ , Roddy E & Rathod T et al.: Clinical diagnosis of symptomatic midfoot osteoarthritis: cross-sectional findings from the Clinical Assessment Study of the Foot. Osteoarthritis Cartilage 23 : 2094, 2015.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57. 

    Vinicombe A , Raspovic A & Menz HB: Reliability of navicular displacement measurement as a clinical indicator of foot posture. JAPMA 91 : 262, 2001.

    • Search Google Scholar
    • Export Citation
  • 58. 

    Eichelberger P , Blasimann A & Lutz N et al.: A minimal markerset for three-dimensional foot function assessment: measuring navicular drop and drift under dynamic conditions. J Foot Ankle Res 11 : 15, 2018.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59. 

    Shrader JA , Popovich JM Jr, & Gracey GC et al.: Navicular drop measurement in people with rheumatoid arthritis: interrater and intrarater reliability. Phys Ther 85 : 656, 2005.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60. 

    Griffiths IB & McEwan IM: Reliability of a new supination resistance measurement device and validation of the manual supination resistance test. JAPMA 102 : 278, 2012.

    • Search Google Scholar
    • Export Citation
  • 61. 

    Noakes H & Payne C: The reliability of the manual supination resistance test. JAPMA 93 : 185, 2003.

  • 62. 

    Cummings GS & Higbie EJ: A weight bearing method for determining forefoot posting for orthotic fabrication. Physiother Res Int 2 : 42, 1997.

  • 63. 

    McPoil TG & Cornwall MW: Prediction of dynamic foot posture during running using the longitudinal arch angle. JAPMA 97 : 102, 2007.

  • 64. 

    Spörndly-Nees S , Dåsberg B & Nielsen RO et al.: The navicular position test: a reliable measure of the navicular bone position during rest and loading. Int J Sports Phys Ther 6 : 199, 2011.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65. 

    Mall NA , Hardaker WM & Nunley JA et al.: The reliability and reproducibility of foot type measurements using a mirrored foot photo box and digital photography compared to caliper measurements. J Biomech 40 : 1171, 2007.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66. 

    Bade MB , Chi TL & Farrell KC et al.: Use of a static measure to predict foot posture at midsupport during running. Int J Sports Phys Ther 11 : 64, 2016.

  • 67. 

    Scholz T , Zech A & Wegscheider K et al.: Reliability and correlation of static and dynamic foot arch measurement in a healthy pediatric population. JAPMA 107 : 419, 2017.

    • Search Google Scholar
    • Export Citation
  • 68. 

    Drefus LC , Kedem P & Mangan SM et al.: Reliability of the arch height index as a measure of foot structure in children. Pediatr Phys Ther 29 : 83, 2017.

  • 69. 

    Yocum A , McCoy SW & Bjornson KF et al.: Reliability and validity of the standing heel-rise test. Phys Occup Ther Pediatr 30 : 190, 2010.

  • 70. 

    Segura-Ortí E & Martínez-Olmos FJ: Test-retest reliability and minimal detectable change scores for sit-to-stand-to-sit tests, the six-minute walk test, the one-leg heel-rise test, and handgrip strength in people undergoing hemodialysis. Phys Ther 91 : 1244, 2011.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71. 

    Sman AD , Hiller CE & Imer A et al.: Design and reliability of a novel heel rise test measuring device for plantarflexion endurance. Biomed Res Int 2014 : 391646, 2014.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72. 

    Hébert-Losier K , Wessman C & Alricsson M et al.: Updated reliability and normative values for the standing heel-rise test in healthy adults. Physiotherapy 103 : 446, 2017.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73. 

    Ness BM , Sudhagoni RG & Tao H et al.: The reliability of a novel heel-rise test versus goniometry to assess plantarflexion range of motion. Int J Sports Phys Ther 13 : 19, 2018.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74. 

    Hafer JF , Lenhoff MW & Song J et al.: Reliability of plantar pressure platforms. Gait Posture 38 : 544, 2013.

  • 75. 

    Nüesch C , Overberg JA & Schwameder H et al.: Repeatability of spatiotemporal, plantar pressure and force parameters during treadmill walking and running. Gait Posture 62 : 117, 2018.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76. 

    Reed LF , Urry SR & Wearing SC: Reliability of spatiotemporal and kinetic gait parameters determined by a new instrumented treadmill system. BMC Musculoskelet Disord 14 : 249, 2013.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77. 

    Niiler T , Church C & Lennon N et al.: Reliability and minimal detectable change in foot pressure measurements in typically developing children. Foot (Edinb) 29 : 29, 2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78. 

    Hafer JF , Lenhoff MW & Song J et al.: Reliability of plantar pressure platforms. Gait Posture 38 : 544, 2013.

  • 79. 

    Akins JS , Keenan KA & Sell TC et al.: Test-retest reliability and descriptive statistics of geometric measurements based on plantar pressure measurements in a healthy population during gait. Gait Posture 35 : 167, 2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80. 

    Item-Glatthorn JF , Casartelli NC & Maffiuletti NA: Reproducibility of gait parameters at different surface inclinations and speeds using an instrumented treadmill system. Gait Posture 44 : 259, 2016.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81. 

    Fernando M , Crowther RG & Cunningham M et al.: The reproducibility of acquiring three dimensional gait and plantar pressure data using established protocols in participants with and without type 2 diabetes and foot ulcers. J Foot Ankle Res 9 : 4, 2016.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82. 

    Camomilla V , Cereatti A & Cutti AG et al.: Methodological factors affecting joint moments estimation in clinical gait analysis: a systematic review. Biomed Eng Online 16 : 106, 2017.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83. 

    Harradine P , Gates L & Bowen C: Real time non-instrumented clinical gait analysis as part of a clinical musculoskeletal assessment in the treatment of lower limb symptoms in adults: a systematic review. Gait Posture 62 : 135, 2018.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84. 

    Di Stasio G: Naples Mondial Podiatry Congress April 2018: Biomechanics and Pathomechanics of the Lower Limb,” Digital Conference Proceedings, Gruppo Editoriale, Rome, 2018 Available at: www.gruppoeditori.com. Accessed December 8, 2018.

    • Search Google Scholar
    • Export Citation
  • 85. 

    Whiting PF , Rutjes AWS & Westwood ME et al.: QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155 : 529, 2011.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86. 

    McPoil TG , Vicenzino B & Cornwall MW et al.: Reliability and normative values for the foot mobility magnitude: a composite measure of vertical and medial-lateral mobility of the midfoot. J Foot Ankle Res 2 : 6, 2009.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

A Narrative Review on the Tests Used in Biomechanical Functional Assessment of the Foot and Leg: Diagnostic Tests of Deformities and Compensations

Gaetano Di Stasio
Search for other papers by Gaetano Di Stasio in
Current site
Google Scholar
PubMed
Close
 MD
and
Mia Montanelli
Search for other papers by Mia Montanelli in
Current site
Google Scholar
PubMed
Close
 MD
View More View Less

Background

To date, scientific literature has not as yet come up with any review showing the diagnostic tests used for functional assessment of the foot and leg.

Methods

A literature review was conducted of electronic databases (MEDLINE, PEDro, DOAJ, BioMed Central, PLOS, and Centre for Reviews and Dissemination at the University of York) up to December 8, 2018. The biomechanical tests, which have adequate supportive literature, were divided into qualitative tests that provide a dichotomy/trichotomy-type answer to clinical diagnostic questions; semiquantitative tests that provide numerical data to clinical diagnostic questions; and quantitative tests that record continuous numerical data (in analogue or digital form).

Results

These tests produce a useful functional evaluation model of the foot and leg for different purposes: evaluation of lower limb deficits or abnormalities in healthy patients and in athletes (in sports or other physical activities); assessment of tissue stress syndromes caused by pathomechanics; evaluation of lower limb deficits or abnormalities in rheumatic disease and diabetic foot patients; and to determine the appropriate functional or semifunctional foot orthotic therapy and therapeutic path used in gait rehabilitation.

Conclusions

Many of these tests have adequate diagnostic reliability and reproducibility and therefore can be considered diagnostic. Few of these are validated, and some have initiated the validation process by determining their sensitivity and specificity. The widespread use of these tools in clinical practice (diagnosis of function) lacks scientific evidence and in-depth analysis of their limitations.

Podos Logo Italia Sri, Centre for Study and Research, Italy.

Corresponding author: Gaetano Di Stasio, MD, Podos Logo Italia Srl, via Mariano D'Ayala, 1, Naples 80121, Italy. (E-mail: g.di.stasio@mclink.it)