• 1. 

    Atway S , Nerone VS & Springer KD et al.: Rate of residual osteomyelitis after partial foot amputation in diabetic patients: a standardized method for evaluating bone margins with intraoperative culture. J Foot Ankle Surg 51 : 749, 2012.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2. 

    Cierny G III: Surgical treatment of osteomyelitis. Plast Reconstr Surg 127 (suppl 1) : 190S, 2011.

  • 3. 

    Izumi Y , Satterfield K & Lee S et al.: Risk of reamputation in diabetic patients stratified by limb and level of amputation: a 10-year observation. Diabetes Care 29 : 566, 2006.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4. 

    Miclau T , Dahners LE & Lindsey RW: In-vitro pharmockinetics of antibiotic release from locally implantable materials. J Orthop Res 11 : 627, 1993.

  • 5. 

    Walenkamp GHIM: How I do it: chronic osteomyelitis. Acta Orthop Scand 68 : 497, 1997.

  • 6. 

    Reffitt DM , Ogston N & Jugdaohsingh R et al.: Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32 : 127, 2003.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7. 

    Keeting PE , Oursler MJ & Wiegand KE et al.: Zeolite A increases proliferation, differentiation, and transforming growth factor β production in normal adult human osteoblast-like cells in vitro. J Bone Miner Res 7 : 1281, 1992.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8. 

    Soares P , Laurindo CAH & Torres RD et al.: Effect of a bioactive glass-ceramic on the apatite nucleation on titanium surface modified by micro-arc oxidation. Surf Coat Technol 206 : 4601, 2012.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9. 

    Damen JJM & Ten Cate JM: Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation. J Dent Res 71 : 453, 1992.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10. 

    Kokubo T & Takadama H: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27 : 2907, 2006.

  • 11. 

    Grinnell F & Feld MK: Adsorption characteristics of plasma fibronectin in relationship to biological activity. J Biomed Mater Res 15 : 363, 1981.

  • 12. 

    Ducheyne P & Qiu Q: Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20 : 2287, 1999.

  • 13. 

    Porter AE: Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition. Micron 37 : 681, 2006.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14. 

    Zreiqat H , Howlett CR & Zannettino A et al.: Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 62 : 175, 2002.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15. 

    Grime PD , Bowerman JE & Weller PJ: Gentamicin impregnated polymethylmethacrylate (PMMA) beads in the treatment of primary chronic osteomyelitis of the mandible. Br J Oral Maxillofac Surg 28 : 367, 1990.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16. 

    Murray WR: Use of antibiotic-containing bone cement. Clin Orthop Rel Res 190 : 89, 1984.

  • 17. 

    Josefsson G , Gudmundsson G & Kolmert L et al.: Prophylaxis with systemic antibiotics versus gentamicin bone cement in total hip arthroplasty. A 5-year survey of 1688 hips. Clin Orthop Rel Res 253 : 173, 1990.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18. 

    Jenny G: Local antibiotic therapy using gentamicin-PMMA chains in post-traumatic bone infections. Short and long-term results. Reconstr Surg Traumatol 20 : 36, 1988.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19. 

    Calhoun JH & Mader JT: Antibiotic beads in the management of surgical infections. Am J Surg 157 : 443, 1989.

  • 20. 

    Korkusuz F , Uchida A & Shinto Y et al.: Experimental implant-related osteomyelitis treated by antibiotic-calium hydroxyapatite ceramic composites. J Bone Joint Surg Br 75 : 111, 1993.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21. 

    Shinto Y , Uchida A & Korkusuz F et al.: Calcium hydroxyapatite ceramic used as a delivery system for antibiotics. J Bone Joint Surg Br 74 : 600, 1992.

  • 22. 

    Jogia RM , Modha DE & Nisal K et al.: Use of highly purified synthetic calcium sulfate impregnated with antibiotics for the management of diabetic foot ulcers complicated by osteomyelitis. Diabetes Care 38 : e79, 2015.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23. 

    Karr JC: Management in the wound-care center outpatient setting of a diabetic patient with forefoot osteomyelitis using Cerament Bone Void Filler impregnated with vancomycin: off-label use. JAPMA 101 : 259, 2011.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24. 

    Koort JK , Mäkinen TJ & Suokas E et al.: Efficacy of ciprofloxacin-releasing bioabsorbable osteoconductive bone defect filler for treatment of experimental osteomyelitis due to Staphylococcus aureus. Antimicrob Agents Chemother 49 : 1502, 2005.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25. 

    Garvin KL , Miyano JA & Robinson D et al.: Polylatide/polyglycolide antibiotic implants in the treatment of osteomyelitis. A canine model. J Bone Joint Surg Am 76 : 1500, 1994.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26. 

    Stemberger A , Grimm AH & Bader F et al.: Local treatment of bone and soft tissue infections with the collagen-gentamicin sponge. Eur J Surg 163 : 17, 1997.

  • 27. 

    Wachol-Drewek Z , Pfeiffer M & Scholl E: Comparative investigation of drug delivery of collagen implants saturated in antibiotic solutions and a sponge containing gentamicin. Biomaterials 17 : 1733, 1996.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28. 

    Lin BR , Caldwell C & Bhaduri S et al.: Optimizing vancomycin release from calcium phosphate-based cement by carboxymethyl cellulose for prevention of osteomyelitis. Surg Infect 18 : 221, 2017.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Improving Outcomes for Osteomyelitis After Partial Bone Resection: A Preliminary Report

Jeffrey C. Karr
Search for other papers by Jeffrey C. Karr in
Current site
Google Scholar
PubMed
Close
 DPM

Following partial bone resection for osteomyelitis, continued osteomyelitis in the remaining bone is common and problematic. Shortcomings in available surgical techniques to combat this also contribute to this problem. Presented are two case studies using a solution to this problem with a different type of bone void filler as a carrier vehicle for delivering antibiotics into the remaining infected bone to eradicate any residual bacteria in the remaining bone.

The Osteomyelitis Center of Central Florida, 5421 S Florida Ave, Lakeland, FL 33813. (E-mail: drkarr@gmail.com)

Save