• 1.

    Hirsch AT & Duval S: The global pandemic of peripheral artery disease. Lancet 382: 1312, 2013.

  • 2.

    Jude EB , Oyibo SO & Chalmers N et al.: Peripheral arterial disease in diabetic and nondiabetic patients. Diabetes Care 24: 1433, 2001.

  • 3.

    Hirsch AT , Haskal ZJ & Hertzer NR et al.: ACC/AHA Guidelines for the Management of Patients with Peripheral Arterial Disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Associations for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients with Peripheral Arterial Disease): summary of recommendations. J Vasc Interv Radiol 17: 1383, 2006.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hirsch AT , Criqui MH & Treat-Jacobson D et al.: Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 286: 1317, 2001.

  • 5.

    Criqui MH , Langer RD & Fronek A et al.: Mortality over a period of ten years in patients with peripheral arterial disease. N Engl J Med 326: 381, 1992.

  • 6.

    Prompers L , Huijberts M & Apelqvist J et al.: High prevalence of ischemia, infection and serious comorbidity in patients with diabetic foot disease in Europe: baseline results from the Eurodiale Study. Diabetologia 50: 18, 2007.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Shah B , Rockman CB & Guo Y et al.: Diabetes and vascular disease in different arterial territories. Diabetes Care 37: 1636, 2014.

  • 8.

    Selvin E , Wattanakit KW & Steffes MW et al.: HbA1c and peripheral arterial disease in diabetes: the Atherosclerosis Risk in Communities study. Diabetes Care 29: 877, 2006.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Fiordaliso F , Clerici G & Maggioni S et al.: Prospective study on microangiopathy in type 2 diabetic foot ulcer. Diabetologia 59: 1542, 2016.

  • 10.

    Tesfaye S , Boulton AJM & Dickenson AH: Mechanisms and management of diabetic painful distal symmetrical polyneuropathy. Diabetes Care 36: 2456, 2013.

  • 11.

    Norgren L , Hiatt WR & Dormandy JA et al; TASC II Working Group. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg 45: S5, 2007.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Patel MR , Conte MS & Cutlip DE et al.: Evaluation and treatment of patients with lower extremity peripheral artery disease: consensus definitions from Peripheral Academic Research Consortium (PARC). J Am Coll Cardiol 65: 931, 2015.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Romiti M , Albers M & Brochado-Neto FC et al.: Meta-analysis of infrapopliteal angioplasty for chronic critical limb ischemia. J Vasc Surg 47: 975, 2008.

  • 14.

    Biancari F & Juvonen T: Angiosome-targeted lower limb revascularization for ischemic foot wounds: systematic review and meta-analysis. Eur J Vasc Endovasc Surg 47: 517, 2014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Taylor GI & Palmer JH: The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br J Plast Surg 40: 113, 1987.

  • 16.

    Sodestrom M , Alback A & Biancari F et al.: Angiosome targeted infrapopliteal endovascular revascularization for treatment of diabetic foot ulcers. J Vasc Surg 57: 427, 2013.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Van Golde JM , Ruiter MS & Schaper NC et al.: Impaired collateral recruitment and outward remodeling in experimental diabetes. Diabetes 57: 2818, 2008.

  • 18.

    Attinger CE , Evans KK & Bulan E et al.: Angiosomes of the foot and ankle and clinical implications for limb salvage: reconstruction, incisions, and revascularization. Plast Reconstr Surg 117: 261S, 2006.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Bosanquet DC , Glasbey JCD & Williams IM et al.: Systematic review and meta-analysis of direct versus indirect angiosomal revascularization of infrapopliteal arteries. Eur J Vasc Endovasc Surg 48: 88, 2014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Chae KJ & Shin JY: Is angiosome-targeted angioplasty effective for limb salvage and wound healing in diabetic foot? a meta-analysis. PLoS One 11: e0159523, 2016.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sampson MJ & Drury PL: Accurate estimation of glomerular filtration rate in diabetic nephropathy from age, body weight, and serum creatinine. Diabetes Care 15: 609, 1992.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Piaggesi A , Castro Lòpez E & Bini L et al.: Measurable deficit of autonomic and sensory nerve function in asymptomatic diabetic patients. J Diabetes Complications 6: 157, 1992.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Charlson M , Szatrowski TP & Peterson J et al.: Validation of a combined comorbidity index. J Clin Epidemiol 47: 1245, 1994.

  • 24.

    Mazzariol F , Ascher E & Salles-Cunha SX et al.: Values and limitations of duplex ultrasonography as the sole imaging method of preoperative evaluation for popliteal and infrapopliteal bypasses. Ann Vasc Surg 13: 1, 1999.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Scatena A , Petruzzi P & Ferrari M et al.: Outcomes of three years of team work on critical limb ischemia in patients with diabetes and foot lesions. Int J Low Extrem Wounds 11: 113, 2012.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Aiello A , Anichini R & Brocco E et al.: Treatment of peripheral arterial disease in diabetes: a consensus of the Italian Society of Diabetes (SID; AMD), Radiology (SIRM) and Vascular Endovascular Surgery (SICVE). Nutr Metab Cardiovasc Dis 24: 355, 2014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bargellini I , Piaggesi A & Cicorelli A et al.: Predictive value of angiographic scores for the integrated management of the ischemic diabetic foot. J Vasc Surg 57: 1204, 2013.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Toursarkissian B , D'Ayala M & Stefanidis D et al.: Angiographic scoring of vascular occlusive disease in the diabetic foot: relevance to bypass graft patency and limb salvage. J Vasc Surg 35: 494, 2002.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Oyibo SO , Jude EB & Tarawneh I et al.: A comparison of two diabetic foot ulcer classification systems: the Wagner and the University of Texas wound classification systems. Diabetes Care 24: 84, 2001.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bakker K , Apelqvist J & Lipsky BA et al.: The 2015 IWGDF guidance documents on prevention and management of foot problems in diabetes development of an evidence-based global consensus. Diabetes Metab Res Rev 32: 2, 2016.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lipsky BA: Medical treatment of diabetic foot infections. Clin Infect Dis 39: S104, 2004.

  • 32.

    Prompers L , Schaper N & Apelqvist J et al.: Prediction of outcome in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study. Diabetologia 51: 747, 2008.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Adam DJ , Beard JD & Cleveland T et al; BASIL Trial Participants: Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 366: 1925, 2005.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Giles KA , Pomposelli FB & Spence TL et al.: Infrapopliteal angioplasty for critical limb ischemia: relation of TransAtlantic InterSociety Consensus class to outcome in 176 limbs. J Vasc Surg 48: 128, 2008.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Varela C , Acin F & de Haro F et al.: The role of foot collateral vessels on ulcer healing and limb salvage after successful endovascular and surgical distal procedures according to an angiosome model. Vasc Endovascular Surg 44: 654, 2010.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kagaya Y , Ohura N & Suga H et al.: “Real angiosome” assessment from peripheral tissue perfusion using tissue oxygen saturation foot-mapping in patients with critical limb ischemia. Eur J Vasc Endovasc Surg 47: 433, 2014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Chen YW , Wang YY & Zhao D et al.: High prevalence of lower extremity peripheral artery disease in type 2 diabetes patients with proliferative diabetic retinopathy. PLoS One 10: e0122022, 2015.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Norman PE , Davis WA & Bruce DG et al.: Peripheral arterial disease and risk of cardiac death in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Care 29: 575, 2006.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Sacks D: The TransAtlantic Inter-Society Consensus (TASC) on the Management of Peripheral Arterial Disease. J Vasc Interv Radiol 14: S351, 2003.

  • 40.

    Faglia E , Clerici G & Losa S et al.: Limb revascularization feasibility in diabetic patients with critical limb ischemia: results from a cohort of 344 consecutive unselected diabetic patients evaluated in 2009. Diabetes Res Clin Pract 95: 364, 2012.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Freisinger E , Koeppe J & Gerss J et al.: Mortality after use of paclitaxel-based devices in peripheral arteries: a real-world safety analysis. Eur Heart J 41: 3732, 2020.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Ouriel K , Adelman MA & Rosenfield K et al.: Safety of paclitaxel-coated balloon angioplasty for femoropopliteal peripheral artery disease. JACC Cardiovasc Intern 12: 2515, 2019.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Effect of Direct Endovascular Revascularization Based on the Angiosome Model on Risk of Major Amputations and Life Expectancy in Type 2 Diabetic Patients with Critical Limb Ischemia and Foot Ulceration

Elisabetta Iacopi
Search for other papers by Elisabetta Iacopi in
Current site
Google Scholar
PubMed
Close
 MD
,
Alberto Coppelli
Search for other papers by Alberto Coppelli in
Current site
Google Scholar
PubMed
Close
 MD
,
Chiara Goretti
Search for other papers by Chiara Goretti in
Current site
Google Scholar
PubMed
Close
 MD
,
Irene Bargellini
Search for other papers by Irene Bargellini in
Current site
Google Scholar
PubMed
Close
 MD
,
Antonio Cicorelli
Search for other papers by Antonio Cicorelli in
Current site
Google Scholar
PubMed
Close
 MD
,
Roberto Cioni
Search for other papers by Roberto Cioni in
Current site
Google Scholar
PubMed
Close
 MD
, and
Alberto Piaggesi
Search for other papers by Alberto Piaggesi in
Current site
Google Scholar
PubMed
Close
 MD

Background

We evaluated whether direct or indirect endovascular revascularization based on the angiosome model affects outcomes in type 2 diabetes and critical limb ischemia.

Methods

From 2010 to 2015, 603 patients with type 2 diabetes were admitted for critical limb ischemia and submitted to endovascular revascularization. Among these patients, 314 (52%) underwent direct and 123 (20%) indirect revascularization, depending on whether the flow to the artery directly feeding the site of ulceration, according to the angiosome model, was successfully acquired; 166 patients (28%) were judged unable to be revascularized. Outcomes were healing, major amputation, and mortality rates.

Results

An overall healing rate of 62.5% was observed: patients who did not receive percutaneous transluminal angioplasty presented a healing rate of 58.4% (P < .02 versus revascularized patients). A higher healing rate was observed in the direct versus the indirect group (82.4% versus 50.4%; P < .001). The major amputation rate was significantly higher in the indirect versus the direct group (9.2% versus 3.2%; P < .05). The overall mortality rate was 21.6%, and it was higher in the indirect versus the direct group (24% versus 14%; P < .05).

Conclusions

These data show that direct revascularization of arteries supplying the diabetic foot ulcer site by means of the angiosome model is associated with a higher healing rate and lower risk of amputation and death compared with the indirect procedure. These results support use of the angiosome model in type 2 diabetes with critical limb ischemia.

Diabetic Foot Section, Medicine Department, Pisa University Hospital, Pisa, Italy.

Department of Diagnostic and Interventional Radiology, Pisa University Hospital, Pisa, Italy.

Corresponding author: Elisabetta Iacopi, MD, Diabetic Foot Section, Medicine Department, Pisa University Hospital, Via Paradisa 2, 56126 Pisa, Italy. (E-mail: elisabettaiacopi@gmail.com)
Save