• 1

    Armstrong DG, Lipsky BA: Diabetic foot infections: stepwise medical and surgical management. Int Wound J 1: 123, 2004.

  • 2

    Funk C, Young G: Subtotal pedal amputations: biomechanical and intraoperative considerations. JAPMA 91: 6, 2001.

  • 3

    Habershaw GM, Gibbons GW, Rosenblum BI: A historical look at the transmetatarsal amputation and its changing indications. JAPMA 83: 79, 1993.

  • 4

    Sanders LJ, Dunlap G: Transmetatarsal amputation: a successful approach to limb salvage. JAPMA 82: 129, 1992.

  • 5

    Schwindt CD, Lulloff RS, Rogers SC: Transmetatarsal amputations. Orthop Clin North Am 4: 31, 1973.

  • 6

    Wallace GF, Stapleton JJ: Transmetatarsal amputations. Clin Podiatr Med Surg 22: 365, 2005.

  • 7

    Stone PA, Back MR, Armstrong PA, et al.: Midfoot amputations expand limb salvage rates for diabetic foot infections. Ann Vasc Surg 19: 805, 2005.

  • 8

    Thomas SR, Perkins JM, Magee TR, et al.: Transmetatarsal amputation: an 8-year experience. Ann R Coll Surg Engl 83: 164, 2001.

  • 9

    Young AE: Transmetatarsal amputation in the management of peripheral ischemia. Am J Surg 134: 604, 1977.

  • 10

    Davis BL, Kuznicki J, Praveen SS, et al.: Lower-extremity amputations in patients with diabetes: pre- and post-surgical decisions related to successful rehabilitation. Diabetes Metab Res Rev 20: 45, 2004.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Gailey RS, Wenger MA, Raya M, et al.: Energy expenditure of trans-tibial amputees during ambulation at self-selected pace. Prosthet Orthot Int 18: 84, 1994.

  • 12

    Landry GJ, Silverman DA, Liem TK, et al.: Predictors of healing and functional outcome following transmetatarsal amputations. Arch Surg 146: 1005, 2011.

  • 13

    Peters E, Childs M, Wunderlich R, et al.: Functional status of persons with diabetes-related lower-extremity amputations. Diabetes Care 24: 1799, 2001.

  • 14

    Tang SFT, Chen CPC, Chen MJL, et al.: Transmetatarsal amputation prosthesis with carbon-fiber plate: enhanced gait function. Am J Phys Med Rehabil 83: 124, 2004.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Adams BE, Edlinger JP, Ritterman Weintraub ML, et al.: Three-year morbidity and mortality rates after nontraumatic transmetatarsal amputation. J Foot Ankle Surg 57: 967, 2018.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Anthony T, Roberts J, Modrall JG, et al.: Transmetatarsal amputation: assessment of current selection criteria. Am J Surg 192: 8, 2006.

  • 17

    Sage R, Pinzur MS, Cronin R, et al.: Complications following midfoot amputation in neuropathic and dysvascular feet. JAPMA 79: 277, 1989.

  • 18

    Shi E, Jex M, Patel S, et al.: Outcomes of wound healing and limb loss after transmetatarsal amputation in the presence of peripheral vascular disease. J Foot Ankle Surg 58: 47, 2019.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Thorud JC, Jupiter DC, Lorenzana J, et al.: Reoperation and reamputation after transmetatarsal amputation: a systematic review and meta-analysis. J Foot Ankle Surg 55: 1007, 2016.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Uzzaman MM, Jukaku S, Kambal A, et al.: Assessing the long-term outcomes of minor lower limb amputations: a 5-year study. Angiology 62: 365, 2011.

  • 21

    Beaulieu RJ, Grimm JC, Lyu H, et al.: Rates and predictors of readmission after minor lower extremity amputations. J Vasc Surg 62: 101, 2015.

  • 22

    Dillingham TR, Pezzin LE, Shore AD: Reamputation, mortality, and health care costs among persons with dysvascular lower-limb amputations. Arch Phys Med Rehabil 86: 480, 2005.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Hosch J, Quiroga C, Bosma J, et al.: Outcomes of transmetatarsal amputations in patients with diabetes mellitus. J Foot Ankle Surg 36: 430, 1997.

  • 24

    Izumi Y, Satterfield K, Lee S, et al.: Risk of reamputation in diabetic patients. Diabetes Care 29: 566, 2006.

  • 25

    Mueller MJ, Allen BT, Sinacore DR: Incidence of skin breakdown and higher amputation after transmetatarsal amputation: implications for rehabilitation. Arch Phys Med Rehabil 76: 50, 1995.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    O’Brien PJ, Cox MW, Shortell CK, et al.: Risk factors for early failure of surgical amputations: an analysis of 8,878 isolated lower extremity amputation procedures. J Am Coll Surg 216: 836, 2013.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Pollard J, Hamilton GA, Rush SM, et al.: Mortality and morbidity after transmetatarsal amputation: retrospective review of 101 cases. J Foot Ankle Surg 45: 91, 2006.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Ries Z, Rungprai C, Harpole B, et al.: Incidence, risk factors, and causes for thirty-day unplanned readmissions following primary lower-extremity amputation in patients with diabetes. J Bone Joint Surg Am 97: 1774, 2014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Miller N, Dardik H, Wolodiger F, et al.: Transmetatarsal amputation: the role of adjunctive revascularization. 13: 705, 1986.

  • 30

    Miller W, Berg C, Wilson ML, et al.: Risk factors for below-the-knee amputation in diabetic foot osteomyelitis after minor amputation. JAPMA 109: 91, 2019.

  • 31

    Nguyen TH, Gordon IL, Whalen D, et al.: Transmetatarsal amputation: predictors of healing. Am Surg 72: 973, 2006.

  • 32

    Pomposelli FB Jr, Basile P, Campbell DR, et al.: Salvaging the ischemic transmetatarsal amputation through distal arterial reconstruction. JAPMA 83: 87, 1993.

  • 33

    Sheahan MG, Hamdan AD, Veraldi JR, et al.: Lower extremity minor amputations: the roles of diabetes mellitus and timing of revascularization. J Vasc Surg 42: 476, 2005.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Toursarkissian B, Hagino RT, Khan K, et al.: Healing of transmetatarsal amputation in the diabetic patient: is angiography predictive? Ann Vasc Surg 19: 769, 2005.

  • 35

    Younger AS, Awwad MA, Kalla TP, et al.: Risk factors for failure of transmetatarsal amputation in diabetic patients: a cohort study. Foot Ankle Int 30: 1177, 2009.

  • 36

    Ahn J, Raspovic KM, Liu GT, et al.: Renal function as a predictor of early transmetatarsal amputation failure. Foot Ankle Spec 12: 439, 2019.

  • 37

    Blume P, Salonga C, Garbalosa J, et al.: Predictors for the healing of transmetatarsal amputations: retrospective study of 91 amputations. Vascular 15: 126, 2007.

  • 38

    Glass H, Rowe VL, Hood DB, et al.: Influence of transmetatarsal amputation in patients requiring lower extremity distal revascularization. Am Surg 70: 845, 2004.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    La Fontaine J, Reyzelman A, Rothenberg G, et al.: The role of revascularization in transmetatarsal amputations. JAPMA 91: 533, 2001.

  • 40

    Lavery LA, Hunt NA, Ndip A, et al.: Impact of chronic kidney disease on survival after amputation in individuals with diabetes. Diabetes Care 33: 2365, 2010.

  • 41

    Attinger CE, Evans KK, Bulan E, et al.: Angiosomes of the foot and ankle and clinical implications for limb salvage: reconstruction, incisions, and revascularization. Plast Reconstr Surg 117: 261, 2006.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Attinger CE, Meyr AJ, Fitzgerald S, et al.: Preoperative Doppler assessment for transmetatarsal amputation. J Foot Ankle Surg 49: 101, 2010.

  • 43

    Attinger C, Cooper P, Blume P, et al.: The safest surgical incisions and amputations applying the angiosome principles and using the Doppler to assess the arterial-arterial connections of the foot and ankle. Foot Ankle Clin 6: 745, 2001.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Gabrielli C, Olave E, Mandiola E, et al.: The deep plantar arch in humans: constitution and topography. Surg Radiol Anat 23: 253, 2001.

  • 45

    Orbay H, Kerem M, Ünlü RE, et al.: Vascular anatomy of plantar muscles. Ann Plast Surg 58: 420, 2007.

  • 46

    Ozer MA, Govsa F, Bilge O: Anatomic study of the deep plantar arch. Clin Anat 18: 434, 2005.

  • 47

    Higashimori A, Iida O, Yamauchi Y, et al.: Outcomes of one straight-line flow with and without pedal arch in patients with critical limb ischemia. Catheter Cardiovasc Interv 87: 129, 2016.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Kawarada O, Fujihara M, Higashimori A, et al.: Predictors of adverse clinical outcomes after successful infrapopliteal intervention. Catheter Cardiovasc Interv 80: 861, 2012.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Manzi M, Fusaro M, Ceccacci T, et al.: Clinical results of below-the knee intervention using pedal-plantar loop technique for the revascularization of foot arteries. J Cardiovasc Surg (Torino) 50: 331, 2009.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Meyer A, Schinz K, Lang W, et al.: Outcomes and influence of the pedal arch in below-the-knee angioplasty in patients with end-stage renal disease and critical limb ischemia. Ann Vasc Surg 35: 121, 2016.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Mochizuki Y, Hoshina K, Shigematsu K, et al.: Distal bypass to a critically ischemic foot increases the skin perfusion pressure at the opposite site of the distal anastomosis. Vascular 24: 361, 2016.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    Palena LM, Brocco E, Manzi M: The clinical utility of below-the-ankle angioplasty using “transmetatarsal artery access” in complex cases of CLI. Catheter Cardiovasc Interv 83: 123, 2014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53

    Palena LM, Manzi M: Extreme below-the-knee interventions: retrograde transmetatarsal or transplantar arch access for foot salvage in challenging cases of critical limb ischemia. J Endovasc Ther 19: 805, 2012.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54

    Rashid H, Slim H, Zayed H, et al.: The impact of arterial pedal arch quality and angiosome revascularization on foot tissue loss healing and infrapopliteal bypass outcome. J Vasc Surg 57: 1219, 2013.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55

    Landis JR, Koch GG: The measurement of observer agreement for categorical data. Biometrics 33: 159, 1977.

  • 56

    Haine A: Patency of the arterial pedal–plantar arch in patients with chronic kidney disease or diabetes mellitus. Pulp Pap Canada 101: 27, 2000.

  • 57

    Neville RF, Attinger CE, Bulan EJ, et al.: Revascularization of a specific angiosome for limb salvage: does the target artery matter? Ann Vasc Surg 23: 367, 2009.

  • 58

    Creech CL, Zinyemba P, Choi ET, et al.: Anatomic limitations of the transmetatarsal amputation with consideration of the deep plantar perforating branch of the dorsalis pedis artery. J Foot Ankle Surg 57: 880, 2018.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59

    Whelan JH, Lazoritz JP, Kiser CR, et al.: Location of the deep plantar artery: a cadaveric study. JAPMA 110: 1, 2020.

  • 60

    Chuckpaiwong B, Korwutthikulrangsri E, Simons P, et al.: Safety area for proximal metatarsal procedures. J Foot Ankle Surg 54: 579, 2015.

  • 61

    Barrett MO, Wade AM, Della Rocca GJ, et al.: The safety of forefoot metatarsal pins in external fixation of the lower extremity. J Bone Joint Surg Am 90: 560, 2008.

  • 62

    Tonogai I, Hayashi F, Tsuruo Y, et al.: Distances from the deep plantar arch to the lesser metatarsals at risk during osteotomy: a fresh cadaveric study. 11: 57, 2018.

    • PubMed
    • Search Google Scholar
    • Export Citation

Avoiding the Deep Plantar Arterial Arch in Transmetatarsal Amputations: A Cadaver Study

James H. Whelan Podiatry, Beloit Health System, Beloit, WI.

Search for other papers by James H. Whelan in
Current site
Google Scholar
PubMed
Close
 DPM
,
Caroline R. Kiser Kentucky/Indiana Foot and Ankle Specialists, Bowling Green, KY.

Search for other papers by Caroline R. Kiser in
Current site
Google Scholar
PubMed
Close
 DPM
,
John P. Lazoritz Foot and Ankle Center of Nebraska and Iowa, Omaha, NE.

Search for other papers by John P. Lazoritz in
Current site
Google Scholar
PubMed
Close
 DPM
, and
Vassilios Vardaxis Physical Therapy/Academic, Des Moines University, Des Moines, IA.

Search for other papers by Vassilios Vardaxis in
Current site
Google Scholar
PubMed
Close
 PhD

Background: The deep plantar arterial arch (DPAA) is formed by an anastomosis between the deep plantar artery and the lateral plantar artery. The potential risk of injury to the DPAA is concerning when performing transmetatarsal amputations, and care must be taken to preserve the anatomy. We sought to determine the positional anatomy of the DPAA based on anatomical landmarks that could be easily identified and palpated during transmetatarsal amputation.

Methods: In an effort to improve our understanding of the positional relationship of the DPAA to the distal metatarsal parabola, dissections were performed on 45 cadaveric feet to measure the location of the DPAA with respect to the distal metatarsal epiphyses. Images of the dissected specimens were digitally acquired and saved for measurement using in-house–written software. The mean, SD, SEM, and 95% confidence interval were calculated for all of the measurement parameters and are reported on pooled data and by sex. An independent-samples t test was used to assess for sex differences. Interrater reliability of the measurements was estimated using the intraclass correlation coefficient.

Results: The origin of the DPAA was located a mean ± SD of 35.6 ± 3.9 mm (95% confidence interval, 34.5–36.8 mm) proximal to the perpendicular line connecting the first and fifth metatarsal heads. The average interrater reliability across all of the measurements was 0.921.

Conclusions: This study provides the positional relationship of the DPAA with respect to the distal metatarsal parabola. This method is easily reproducible and may assist the foot and ankle surgeon with surgical planning and approach when performing partial pedal amputation.

Corresponding author: James H. Whelan, DPM, Podiatry, Beloit Health System, 1905 E Huebbe Pkwy, Beloit, WI 53511. (E-mail: jim.h.whelan@gmail.com).
Save