• 1

    Nix S, Smith M, Vicenzino B: Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. J Foot Ankle Res 3: 1, 2010.

  • 2

    Roddy E, Thomas MJ, Marshall M, et al: The population prevalence of symptomatic radiographic foot osteoarthritis in community-dwelling older adults: cross-sectional findings from the clinical assessment study of the foot. Ann Rheum Dis 74: 156, 2015.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    van Saase JL, van Romunde LK, Cats A, et al: Epidemiology of osteoarthritis: Zoetermeer survey: comparison of radiological osteoarthritis in a Dutch population with that in 10 other populations. Ann Rheum Dis 48: 271, 1989.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Zammit GV, Menz HB, Munteanu SE: Structural factors associated with hallux limitus/rigidus: a systematic review of case control studies. J Orthop Sports Phys Ther 39: 733, 2009.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Belczyk R, Stapleton J, Grossman J, et al: Complications and revisional hallux valgus surgery. Clin Podiatr Med Surg 26: 475, 2009.

  • 6

    Lee K, Park Y, Jegal H, et al: Deceptions in hallux valgus. Foot Ankle Clin North Am 19: 361, 2014.

  • 7

    Lehman D: Salvage of complications of hallux valgus surgery. Foot Ankle Clin North Am 8: 15, 2003.

  • 8

    Brewster M: Does total joint replacement or arthrodesis of the first metatarsophalangeal joint yield better functional results? a systematic review of the literature. J Foot Ankle Surg 49: 546, 2010.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Garras DN, Durinka JB, Bercik M, et al: Conversion arthrodesis for failed first metatarsophalangeal joint hemiarthroplasty. Foot Ankle Int 34: 1227, 2013.

  • 10

    DeCoster TA, Gehlert RJ, Mikola EA, et al; Management of posttraumatic segmental bone defects. J Am Acad Orthop Surg 12: 28, 2004.

  • 11

    Glasoe WM, Yack HJ, Saltzman CL: Anatomy and biomechanics of the first ray. Phys Ther 79: 854, 1999.

  • 12

    Easley ME, Wiesel SW, eds: Operative Techniques in Foot and Ankle Surgery, Lippincott Williams & Wilkins, Philadelphia, 2011.

  • 13

    Nawoczenski DA, Baumhauer JF, Umberger BR: Relationship between clinical measurements and motion of the first metatarsophalangeal joint during gait. J Bone Joint Surg Am 81: 370, 1999.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Kuhn MA, Lippert FG III, Phipps MJ, et al: Blood flow to the metatarsal head after chevron bunionectomy. Foot Ankle Int 26: 526, 2005.

  • 15

    Reber T, Hjelm L, Schweitzer M, et al: Distraction osteogenesis for treatment of a shortened first metatarsal after failed first metatarsophalangeal joint arthroplasty. Foot Ankle Online J 13: 9, 2020.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Da Cunha RJ, Karnovsky SC, Fragomen AT, et al: Distraction osteogenesis and fusion for failed first metatarsophalangeal joint replacement: case series. Foot Ankle Int 39: 242, 2018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Kim HS, Lee YS, Jung JH, et al: Complications of distraction osteogenesis in brachymetatarsia: comparison between the first and fourth brachymetatarsia. Foot Ankle Surg 25: 113, 2019.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Kumar P, Pillai A, Bate JA, et al: Distraction osteogenesis for brachymetatarsia using initial circular fixator and early trans-fixation metatarsal K-wires: a series of three cases. J Surg Case Rep 2018: rjy269, 2018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Fuiano M, Mosca M, Caravelli S, et al: Callus distraction with external fixator for the treatment of congenital brachymetatarsia of the fourth ray. Foot Ankle Surg 26: 693, 2020.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Green SA: Skeletal defects: a comparison of bone grafting and bone transport for segmental skeletal defects. Clin Orthop 301: 111, 1994.

  • 21

    Green SA, Jackson JM, Wall DM, et al: Management of segmental defects by the Ilizarov intercalary bone transport method. Clin Orthop 280: 136, 1992.

  • 22

    Ilizarov GA, Ledyaev VI: The replacement of long tubular bone defects by lengthening distraction osteotomy of one of the fragments: 1969. Clin Orthop 280: 7, 1992.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Polyzois D, Papachristou G, Kotsiopoulos K, et al: Treatment of tibial and femoral bone loss by distraction osteogenesis: experience in 28 infected and 14 clean cases. Acta Orthop Scand Suppl 275: 84, 1997.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Marsh JL, Prokuski L, Biermann JS: Chronic infected tibial nonunions with bone loss: conventional techniques versus bone transport. Clin Orthop 301: 139, 1994.

  • 25

    Prokuski LJ, Marsh JL: Segmental bone deficiency after acute trauma: the role of bone transport. Orthop Clin North Am 25: 753, 1994.

  • 26

    Abulaiti A, Yilihamu Y, Yasheng T, et al: The psychological impact of external fixation using the Ilizarov or Orthofix LRS method to treat tibial osteomyelitis with a bone defect. Injury 48: 2842, 2017.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Liu Z, Aronson J, Wahl EC, et al: A novel rat model for the study of deficits in bone formation in type-2 diabetes. Acta Orthop 78: 46, 2007.

  • 28

    Thrailkill KM, Liu L, Wahl EC, et al: Bone formation is impaired in a model of type 1 diabetes. Diabetes 54: 2875, 2005.

  • 29

    Fang TD, Salim A, Xia W, et al: Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res 20: 1114, 2005.

  • 30

    Toma CD, Dominkus M, Pfeiffer M, et al: Metatarsal reconstruction with use of free vascularized osteomyocutaneous fibular grafts following resection of malignant tumors of the midfoot: a series of six cases. J Bone Joint Surg Am 89: 1553, 2007.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Toriyama K, Kamei Y, Yagi S, et al: Reconstruction of the first and second metatarsals with free vascularised double-barrelled fibular graft after resection of a chondrosarcoma. J Plast Reconstr Aesthet Surg 62: e580, 2009.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Shah SA, Bilal M, Irfanullah MHS, et al: An early experience of reconstruction of foot tripod with free fibula flap. Pak J Surg 36: 59, 2020.

  • 33

    Hertel R, Gerber A, Schlegel U, et al: Cancellous bone graft for skeletal reconstruction: muscular versus periosteal bed: preliminary report. Injury 25 (suppl 1): A59, 1994.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Romana M, Masquelet A: Vascularized periosteum associated with cancellous bone graft: an experimental study. Plast Reconstr Surg 85: 587, 1990.

  • 35

    Masquelet AC: Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction. Langenbecks Arch Surg 388: 344, 2003.

  • 36

    Masquelet AC: Induced membrane technique: pearls and pitfalls. J Orthop Trauma 31: S36, 2017.

  • 37

    Dekker TJ, Steele JR, Federer AE, et al: Use of patient-specific 3D-printed titanium implants for complex foot and ankle limb salvage, deformity correction, and arthrodesis procedures. Foot Ankle Int 39: 916, 2018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Hirao M, Ikemoto S, Tsuboi H, et al: Computer assisted planning and custom-made surgical guide for malunited pronation deformity after first metatarsophalangeal joint arthrodesis in rheumatoid arthritis: a case report. Comput Aided Surg 19: 13, 2014.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    US Food and Drug Administration: Custom Device Exemption Guidance for Industry and Food and Drug Administration Staff, US Food and Drug Administration, Silver Spring, MD, 2014.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Kadakia RJ, Wixted CM, Allen NB, et al: Clinical applications of custom 3D printed implants in complex lower extremity reconstruction. 3D Printing in Medicine 6: 1, 2020.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Myerson MS, Schon LC, McGuigan FX, et al: Result of arthrodesis of the hallux metatarsophalangeal joint using bone graft for restoration of length. Foot Ankle Int 21: 297, 2000.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Luk PC, Johnson JE, McCormick JJ, et al: First metatarsophalangeal joint arthrodesis technique with interposition allograft bone block. Foot Ankle Int 36: 936, 2015.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Parry E, Catanzariti AR: Use of three-dimensional titanium trusses for arthrodesis procedures in foot and ankle surgery: a retrospective case series. J Foot Ankle Surg 60: 824, 2021.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    DiDomenico LA, Thomas ZM: Osteobiologics in foot and ankle surgery. Clin Podiatr Med Surg 32: 1, 2015.

  • 45

    Myerson MS, Neufeld SK, Uribe J: Fresh-frozen structural allografts in the foot and ankle. J Bone Joint Surg Am 87: 113, 2005.

  • 46

    Plantz MA, Hsu WK: Recent research advances in biologic bone graft materials for spine surgery. Curr Rev Musculoskelet Med 13: 318, 2020.

  • 47

    Rodriguez RU, Kemper N, Breathwaite E, et al: Demineralized bone matrix fibers formable as general and custom 3D printed mold-based implants for promoting bone regeneration. Biofabrication 8: 035007, 2016.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Usuelli FG, Tamini J, Maccario C, et al: Bone-block arthrodesis procedure in failures of first metatarsophalangeal joint replacement. Foot Ankle Surg 23: 163, 2017.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Mulier T, Dereymaeker G, Herman P, et al: Revision of failed Keller arthroplasty with intercalary bone graft. Tech Foot Ankle Surg 6: 130, 2007.

  • 50

    Gross CE, Hsu AR, Lin J, et al: Revision MTP arthrodesis for failed MTP arthroplasty. Foot Ankle Spec 6: 471, 2013.

  • 51

    Malhotra K, Nunn T, Qamar F, et al: Interposition bone block arthrodesis for revision hallux metatarsophalangeal joint surgery: a case series. Foot Ankle Int 36: 556, 2015.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    Bhosale A, Munoruth A, Blundell C, et al: Complex primary arthrodesis of the first metatarsophalangeal joint after bone loss. Foot Ankle Int 32: 968, 2011.

  • 53

    Mao DW, Zheng C, Amatullah NN, et al: Salvage arthrodesis for failed first metatarsophalangeal joint arthroplasty: a network meta-analysis. Foot Ankle Surg 26: 614, 2020.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54

    Brodsky JW, Ptaszek AJ, Morris SG: Salvage first MTP arthrodesis utilizing ICBG: clinical evaluation and outcome. Foot Ankle Int 21: 290, 2000.

  • 55

    Kumar G, Narayan B: “Morbidity at Bone Graft Donor Sites,” in Classic Papers in Orthopaedics, p 503, Springer, London, 2014.

  • 56

    Younger EM, Chapman MW: Morbidity at bone graft donor sites. J Orthop Trauma 3: 192, 1989.

  • 57

    Steele JR, Kadakia RJ, Cunningham DJ, et al: Comparison of 3D printed spherical implants versus femoral head allografts for tibiotalocalcaneal arthrodesis. J Foot Ankle Surg 59: 1167, 2020.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58

    So E, Mandas VH, Hlad L: Large osseous defect reconstruction using a custom three-dimensional printed titanium truss implant. J Foot Ankle Surg 57: 196, 2018.

Salvage First Metatarsophalangeal Joint Fusion with a Three-Dimensional–Printed Implant for Osseous Defects: A Case Series

Lance J. Johnson The Reconstruction Institute, The Bellevue Hospital, Bellevue, OH.

Search for other papers by Lance J. Johnson in
Current site
Google Scholar
PubMed
Close
 DPM
,
Paul R. Leatham The Reconstruction Institute, The Bellevue Hospital, Bellevue, OH.

Search for other papers by Paul R. Leatham in
Current site
Google Scholar
PubMed
Close
 DPM
,
Coleman O. Clougherty The Reconstruction Institute, The Bellevue Hospital, Bellevue, OH.
Cleveland Lower Extremity Specialists, Cleveland, OH.

Search for other papers by Coleman O. Clougherty in
Current site
Google Scholar
PubMed
Close
 DPM
, and
Peter D. Highlander

Search for other papers by Peter D. Highlander in
Current site
Google Scholar
PubMed
Close
 DPM

Background: In this study, we aimed to describe a case series of revision first metatarsophalangeal joint fusion with a three-dimensional (3-D)–printed implant for osseous deficits of the first metatarsophalangeal joint. Bone defects of the first ray are a common problem in foot and ankle surgery. Etiologies include nonunion, avascular necrosis, osteomyelitis, failed first metatarsophalangeal joint implant arthroplasty, and failed hemijoint resection arthroplasty. Treatment options include acute shortening, block allograft, block autograft, distraction osteogenesis, vascularized free fibula, Masquelet technique, and partial first-ray amputation. Three-dimensional printing provides an opportunity to improve outcomes, with less donor site morbidity and less extensive recovery time than an external fixation device. It has been used in other facets of foot and ankle surgery with encouraging results.

Methods: Three patients (four feet) underwent revision first metatarsophalangeal joint fusion with a 3-D–printed implant. Reasons for revision included avascular necrosis after distal metatarsal osteotomy in one patient and bone deficit after failed first metatarsophalangeal joint implant in two patients.

Results: All patients had a minimum follow up of 12 months. Two patients had painful hardware and had to undergo revision due to implant design. At most recent follow up all patients were pain free with improved pain scores.

Conclusions: In revisional first metatarsophalangeal joint surgery with osseous deficits, the goal is to restore length and alignment, which improves function of the medial column. Custom 3-D–printed implants for first metatarsophalangeal joint revision can provide an opportunity for improved outcomes and healing.

Corresponding author: Lance J. Johnson, DPM, The Reconstruction Institute, 102 Commerce Park Dr, Suite D, Bellevue, OH 44811. (E-mail: lancejohnsondpm@gmail.com)
Save