Search Results
You are looking at 1 - 6 of 6 items for :
- Author or Editor: Ryan T. Crews x
- Original Articles x
- Refine by access: All Content x
Association of Footprint Measurements with Plantar Kinetics
A Linear Regression Model
Background
The use of foot measurements to classify morphology and interpret foot function remains one of the focal concepts of lower-extremity biomechanics. However, only 27% to 55% of midfoot variance in foot pressures has been determined in the most comprehensive models. We investigated whether dynamic walking footprint measurements are associated with inter-individual foot loading variability.
Methods
Thirty individuals (15 men and 15 women; mean ± SD age, 27.17 ± 2.21 years) walked at a self-selected speed over an electronic pedography platform using the midgait technique. Kinetic variables (contact time, peak pressure, pressure-time integral, and force-time integral) were collected for six masked regions. Footprints were digitized for area and linear boundaries using digital photo planimetry software. Six footprint measurements were determined: contact area, footprint index, arch index, truncated arch index, Chippaux-Smirak index, and Staheli index. Linear regression analysis with a Bonferroni adjustment was performed to determine the association between the footprint measurements and each of the kinetic variables.
Results
The findings demonstrate that a relationship exists between increased midfoot contact and increased kinetic values in respective locations. Many of these variables produced large effect sizes while describing 38% to 71% of the common variance of select plantar kinetic variables in the medial midfoot region. In addition, larger footprints were associated with larger kinetic values at the medial heel region and both masked forefoot regions.
Conclusions
Dynamic footprint measurements are associated with dynamic plantar loading kinetics, with emphasis on the midfoot region.
Background: Off-loading excessive pressure is essential to healing diabetic foot ulcers. However, many patients are not compliant in using prescribed footwear or off-loading devices. We sought to validate a method of objectively measuring off-loading compliance via activity monitors.
Methods: For 4 days, a single subject maintained a written compliance diary concerning use of a removable cast walker. He also wore a hip-mounted activity monitor during all waking hours. An additional activity monitor remained mounted on the cast walker at all times. At the conclusion of the 4 days, the time-stamped hip activity data were independently coded for walker compliance by the compliance diary and by using the time-stamped walker activity data.
Results: An intraclass reliability of 0.93 was found between diary-coded and walker monitor–coded activity.
Conclusions: These results support the use of this dual activity monitor approach for assessing off-loading compliance. An advantage of this approach versus a patient-maintained diary is that the monitors are not susceptible to incorrect patient recall or a patient’s desire to please a caregiver by reporting inflated compliance. Furthermore, these results seem to lend support to existing reports in the literature using similar methods. (J Am Podiatr Med Assoc 99(2): 100–103, 2009)
Background: The removal of necrotic tissue from chronic wounds is required for wound healing to occur. Hydrodebridement (jet lavage) and superoxidized aqueous solution have been independently used for debriding wounds. We sought to investigate the use of superoxidized aqueous solution with a jet lavage system.
Methods: Twenty patients with diabetic foot ulcers were randomly assigned in a 1:1 ratio to receive jet lavage debridement with either superoxidized aqueous solution or standard saline weekly.
Results: There was no significant difference between the two treatments in the reduction of bacterial load or wound size in 4 weeks. No adverse reactions were reported for either treatment.
Conclusions: The use of superoxidized aqueous solution for jet lavage debridement seemed to be as safe and effective as saline. Future investigations should concentrate on whether superoxidized aqueous solution may reduce the bacterial air contamination associated with hydrodebridement. (J Am Podiatr Med Assoc 101(2): 124–126, 2011)
Background
Up to 10% of people will experience heel pain. The purpose of this prospective, double-blind, randomized clinical trial was to compare custom foot orthoses (CFO), prefabricated foot orthoses (PFO), and sham insole treatment for plantar fasciitis.
Methods
Seventy-seven patients with plantar fasciitis for less than 1 year were included. Outcome measures included first step and end of day pain, Revised Foot Function Index short form (FFI-R), 36-Item Short Form Health Survey (SF-36), activity monitoring, balance, and gait analysis.
Results
The CFO group had significantly improved total FFI-R scores (77.4 versus 57.2; P = .03) without group differences for FFI-R pain, SF-36, and morning or evening pain. The PFO and CFO groups reported significantly lower morning and evening pain. For activity, the CFO group demonstrated significantly longer episodes of walking over the sham (P = .019) and PFO (P = .03) groups, with a 125% increase for CFOs, 22% PFOs, and 0.2% sham. Postural transition duration (P = .02) and balance (P = .05) improved for the CFO group. There were no gait differences. The CFO group reported significantly less stretching and ice use at 3 months.
Conclusions
The CFO group demonstrated 5.6-fold greater improvements in spontaneous physical activity versus the PFO and sham groups. All three groups improved in morning pain after treatment that included standardized athletic shoes, stretching, and ice. The CFO changes may have been moderated by decreased stretching and ice use after 3 months. These findings suggest that more objective measures, such as spontaneous physical activity improvement, may be more sensitive and specific for detecting improved weightbearing function than traditional clinical outcome measures, such as pain and disease-specific quality of life.
Background:
Offloading devices for diabetic foot ulcers (DFU) generally restrict exercise. In addition to traditional health benefits, exercise could benefit DFU by increasing blood flow and acting as thermotherapy. This study functionally evaluated a cycling cleat designed for forefoot DFU.
Methods:
Fifteen individuals at risk of developing a DFU used a recumbent stationary bicycle to complete one 5-minute cycling bout with the DFU cleat on their study foot and one 5-minute bout without it. Foot stress was evaluated by plantar pressure insoles during cycling. Laser Doppler perfusion monitored blood flow to the hallux. Infrared photographs measured foot temperature before and after each cycling bout.
Results:
The specialized cleat significantly reduced forefoot plantar pressure (9.9 kPa versus 62.6 kPa, P < .05) and pressure time integral (15.4 versus 76.4 kPa*sec, P < .05). Irrespective of footwear condition, perfusion to the hallux increased (3.97 ± 1.2 versus 6.9 ± 1.4 tissue perfusion units, P < .05) after exercise. Infrared images revealed no changes in foot temperature.
Conclusions:
The specialized cleat allowed participants to exercise with minimal forefoot stress. The observed increase in perfusion suggests that healing might improve if patients with active DFU were to use the cleat. Potential thermotherapy for DFU was not supported by this study. Evaluation of the device among individuals with active DFU is now warranted.
Background: Exercise has not been studied extensively in persons with active neuropathic diabetic foot wounds, primarily because a device does not exist that allows patients to exercise while sufficiently off-loading pressure at the ulcer site. The purpose of this project was to demonstrate a device that reduces cycling plantar forefoot pressure.
Methods: Ten healthy participants rode a recumbent bicycle under three cycling conditions. While the left foot interaction remained constant with a standard gym shoe and pedal, the right foot was exposed to a control condition with standard gym shoe and pedal, gym shoe and specialized cleat, and gym shoe with an off-loading insole and specialized cleat. Pressure and contact area of the plantar aspect of the feet were recorded for a 10-sec interval once during each minute of each condition’s 7-min trial.
Results: The off-loading insole and specialized cleat condition yielded significantly lower (P < .01) peak pressure, contact area, and pressure–time integral values in the forefoot than the specialized cleat condition with gym shoe, which yielded significantly lower values (P < .01) than the standard gym shoe and pedal.
Conclusion: Modifications to footwear may alter plantar forefoot pressures, contact area, and pressure–time integrals while cycling. The CLEAR Cleat could play a significant role in the facilitation of fitness in patients with (or at high risk for) neuropathic wounds. (J Am Podiatr Med Assoc 98(4): 261–267, 2008)