Search Results
Background:
On a national level, heroin-related hospital admissions have reached an all-time high. With the foot being the fourth most common injection site, heroin-related lower-extremity infections have become more prevalent owing to many factors, including drug preparation, injection practices, and unknown additives.
Methods:
We present a 16-month case series in which eight patients with lower-extremity infections secondary to heroin abuse presented to The Jewish Hospital in Cincinnati, Ohio.
Results:
Three cases of osteomyelitis were seen. All of the infections were cultured and yielded a wide array of microbes, including Staphyloccoccus, Streptococcus, Bacillus, Serratia, Prevotella, and Eikenella. All of the patients were treated with intravenous antibiotic agents, with nearly all receiving combination therapy. Seven of the eight patients underwent surgery during their hospital stay, with two undergoing amputation. Only half of the patients followed up after discharge.
Conclusions:
This case series brings to light many considerations in the diagnosis and management of the heroin user, including multivariable attenuation of immunity, existing predisposition to infection backed by unsterile drug preparation and injection practices, innocuous presentation of deep infections, microbial spectrum, and recommendations on antimicrobial intervention, noncompliance, and poor follow-up. By having greater knowledge in unique considerations of diagnosis and treatment, more efficient care can be provided to this unique patient population.
Background:
Diabetic foot wounds remain a significant health-care issue. Healing these wounds in a timely manner is of paramount importance because the duration of ulceration correlates with increased rates of infection and amputation, costing billions of dollars yearly. Collagen-based matrices have been used as wound covers and have been shown to improve and expedite healing. We present our experience with equine pericardium biomatrix for the treatment of neuropathic foot wounds.
Methods:
Thirty-four patients with 37 diabetic foot wounds were evaluated at two institutions prospectively. All of the wounds were debrided, and equine pericardium biomatrix was applied. Secondary dressings were changed every 48 to 72 hours until healed or for 12 weeks after application. Healing rate at 12 weeks, time to wound closure, and complications were evaluated.
Results:
Twenty-two men and 12 women (mean age, 56.9 years) were treated and evaluated. Mean and median wound sizes at initial treatment were 715.8 and 440 mm2, respectively. The overall wound healing rate by 12 weeks was 75.7% (n =28). Mean and median times to wound closure were 7.2 and 7.0 weeks, respectively. No device or procedure-related complications were reported.
Conclusions:
The use of equine pericardium as a temporary biological scaffold is safe and effective for the treatment of chronic neuropathic foot wounds. (J Am Podiatr Med Assoc 102(5): 352–358, 2012)
Diabetic foot infections are a common and often serious problem, accounting for more hospital bed days than any other complication of diabetes. Despite advances in antibiotic drug therapy and surgical management, these infections continue to be a major risk factor for amputations of the lower extremity. Although a variety of wound size and depth classification systems have been adapted for use in codifying diabetic foot ulcerations, none are specific to infection. In 2003, the International Working Group on the Diabetic Foot developed guidelines for managing diabetic foot infections, including the first severity scale specific to these infections. The following year, the Infectious Diseases Society of America published their diabetic foot infection guidelines. Herein, we review some of the critical points from the Executive Summary of the Infectious Diseases Society of America document and provide a commentary following each issue to update the reader on any pertinent changes that have occurred since publication of the original document in 2004.
The importance of a multidisciplinary limb salvage team, apropos of this special issue jointly published by the American Podiatric Medical Association and the Society for Vascular Surgery, cannot be overstated. (J Am Podiatr Med Assoc 100(5): 395–400, 2010)
Background:
Osteomyelitis is a common complication in the diabetic foot that can conclude with amputation. The purpose of this study was to evaluate the role of diffusion-weighted magnetic resonance imaging (DWI) in the diagnosis of osteomyelitis in diabetic foot ulcer (DFU).
Methods:
Thirty patients with type 2 diabetes mellitus and a DFU were enrolled. Both DWIs and conventional MRIs were obtained. Apparent diffusion coefficient (ADC) measurements were made by transferring the images to a workstation. The measurements were made both from bone with osteomyelitis, or nearest to the injured area if osteomyelitis is not available, and from the adjacent soft tissue.
Results:
The patients comprised nine women (30%) and 21 men (70%) with a mean age of 58.7 years (range, 41–78 years). The levels of ADC were significantly low (P = .022) and the erythrocyte sedimentation rates were significantly high (P = .014) in patients with osteomyelitis (n = 9) compared with patients without osteomyelitis (n = 21). The mean ± SD bone ADC value (0.75 ± 0.16 × 10–3 mm2/sec) was significantly lower than the adjacent soft-tissue ADC value (0.90 ± 0.15 × 10–3 mm2/sec) in patients with osteomyelitis (P = .04).
Conclusions:
It is suggested that DWI contributes to conventional MRI with short imaging time and no requirement for contrast agent. Therefore, DWI may be an alternative diagnostic method for the evaluation of DFU and the detection of osteomyelitis.
This prospective longitudinal study assessed whether baseline mean skin temperature measurements are useful in predicting the most common foot-related complications of diabetes mellitus. We evaluated the mean of baseline skin temperatures taken bilaterally from six plantar sites in 1,588 patients with diabetes. There was no difference in skin temperature based on neuropathy, foot laterality, or foot risk category or between people with and without foot deformity and elevated plantar foot pressure. Whereas people with Charcot’s arthropathy had slightly but significantly higher mean temperatures (84.8° ± 3.5° F versus 82.5° ± 4.7° F), this was not true for those who developed ulcers or infections or who underwent amputations. The presence of vascular disease was not associated with lower skin temperatures. Mexican Americans (83.0° ± 4.6° F) and blacks (83.6° ± 4.5° F) had higher mean skin temperatures at baseline than did non-Hispanic whites (81.8° ± 4.6° F). Baseline measurement of nonfocal mean skin temperatures is not an effective means of screening people for future events. Regular assessment of skin temperatures, using the contralateral site as a physiologic control, may be a better use of this technology. (J Am Podiatr Med Assoc 93(6): 443-447, 2003)
Background: We sought to determine the similarity of pathogens isolated from soft tissue and bone in patients with diabetic foot infections. It is widely believed that soft-tissue cultures are adequate in the determination of causative bacteria in patients with diabetic foot osteomyelitis. The culture results of specimens taken concurrently from soft-tissue and bone infections show that the former does not predict the latter with sufficient reliability. We sought to determine the similarity of pathogens isolated from soft tissue and bone in patients with diabetic foot infections.
Methods: Forty-five patients with diabetic foot infections were enrolled in the study. Patients had to have clinically suspected foot lesions of grade 3 or higher on the Wagner classification system. In patients with clinically suspected osteomyelitis, magnetic resonance imaging, scintigraphy, or histopathologic examination were performed. Bone and deep soft tissue specimens were obtained from all patients by open surgical procedures under aseptic conditions during debridement or amputation. The specimens were compared only with the other specimens taken from the same patients.
Results: The results of bone and soft-tissue cultures were identical in 49% (n = 22) of cases. In 11% (n = 5) of cases there were no common pathogens. In 29% (n = 13) of cases there were more pathogens in the soft-tissue specimens; these microorganisms included microbes isolated from bone cultures. In four patients (9%) with culture-positive soft-tissue specimens, bone culture specimens remained sterile. In one patient (2%) with culture-positive bone specimen, soft-tissue specimen remained sterile.
Conclusion: Culture specimens should be obtained from both the bone and the overlying deep soft tissue in patients with suspected osteomyelitis whose clinical conditions are suitable. The decision to administer antibiotic therapy should depend on these results. (J Am Podiatr Med Assoc 98(4): 290–295, 2008)
Therapeutic Options for Diabetic Foot Infections
A Review with an Emphasis on Tissue Penetration Characteristics
Foot complications are common in diabetic patients; foot ulcers are among the more serious consequences. These ulcers frequently become infected, and if not treated promptly and appropriately, diabetic foot infections can lead to septic gangrene and amputation. Foot infections may be classified as mild, moderate, or severe; this largely determines the approach to therapy. Staphylococcus aureus is the most common pathogen in these infections, and the increasing incidence of methicillin-resistant S aureus during the past two decades has further complicated antibiotic treatment. Chronic infections are often polymicrobial. Physiologic changes, and local and systemic inflammation, can affect the plasma and tissue pharmacokinetics of antimicrobial agents in diabetic patients, leading to impaired target-site penetration. Knowledge of the serum and tissue concentrations of antibiotics in diabetic patients is, therefore, important for choosing the optimal drug and dose. This article reviews the commonly used therapeutic options for treatment, including many newer antibiotics developed to target multidrug-resistant gram-positive bacteria, and includes available data relating specifically to the tissue penetration of these agents. (J Am Podiatr Med Assoc 100(1): 52–63, 2010)
Ovine Forestomach Matrix in the Surgical Management of Complex Lower-Extremity Soft-Tissue Defects
A Retrospective Multicenter Case Series
Background: Chronic lower-extremity defects may lead to major amputations and have severe consequences on patient quality of life and mortality. Dermal matrices have become part of the reconstructive ladder and are often deployed in these scenarios to quickly build neodermis, especially in volumetric defects over exposed bone and tendon initially, to allow for subsequent closure by means of split-thickness skin grafting (STSG) or secondary intention. Ovine forestomach matrix (OFM) is a decellularized extracellular matrix (ECM) bioscaffold available in both sheet and particulate forms that can be used as a dermal matrix in various soft-tissue reconstruction procedures.
Methods: This retrospective case series evaluated the use of OFM products in the surgical reconstruction of 50 cases (n = 50) comprised of challenging lower-extremity defects from seven healthcare centers. Patient records were reviewed to identify comorbidities, defect cause, defect size, presence of exposed structures, Centers for Disease Control and Prevention contamination score, Wagner grade, OFM graft use, time to 100% granulation tissue, STSG use, overall time to heal, and postoperative complications. The primary study outcomes were time (days) to 100% granulation tissue formation, with secondary outcomes including overall time to wound closure (weeks), STSG take at 1 week, and complications.
Results: The results of this case series demonstrate OFM as a clinically effective treatment in the surgical management of complex lower-extremity soft-tissue defects with exposed structures in patients with multiple comorbidities. One application of OFM products was effective in regenerating well-vascularized neodermis, often in the presence of exposed structures, with a mean time to 100% granulation of 26.0 ± 22.2 days.
Conclusions: These data support the use of OFM as a safe, cost-effective, and clinically effective treatment option for coverage in complex soft-tissue wounds, including exposed vital structures, and to shorten the time to definitive wound closure in complicated patient populations.
Background:
In vitro biomechanical testing of the human foot often involves the use of fresh frozen cadaveric specimens to investigate interventions that would be detrimental to human subjects. The Thiel method is an alternative embalming technique that maintains soft-tissue consistency similar to that of living tissue. However, its suitability for biomechanical testing is unknown. Thus, the aim of this study was to determine whether Thiel-embalmed foot specimens exhibit kinematic and kinetic biomechanical properties similar to those of fresh frozen specimens.
Methods:
An observational study design was conducted at a university biomechanics laboratory. Three cadavers had both limbs amputated, with one being fresh frozen and the other preserved by Thiel's embalming. Each foot was tested while undergoing plantarflexion and dorsiflexion in three states: unloaded and under loads of 10 and 20 kg. Their segment kinematics and foot pressure mapping were assessed simultaneously.
Results:
No statistically significant differences were detected between fresh frozen and Thiel-embalmed sample pairs regarding kinematics and kinetics.
Conclusions:
These findings highlight similar kinematic and kinetic properties between fresh frozen and Thiel-embalmed foot specimens, thus possibly enabling these specimens to be interchanged due to the latter specimens' advantage of delayed decomposition. This can open innovative opportunities for the use of these specimens in applications related to the investigation of dynamic foot function in research and education.
Dosing Activity and Return to Preulcer Function in Diabetes-Related Foot Ulcer Remission
Patient Recommendations and Guidance from the Limb Preservation Consortium at USC and the Rancho Los Amigos National Rehabilitation Center
Diabetes-related foot ulcers are a leading cause of global morbidity, mortality, and health-care costs. People with a history of foot ulcers have a diminished quality of life attributed to limited walking and mobility. One of the largest concerns is ulceration recurrence. Approximately 40% of patients with ulcerations will have a recurrent ulcer in the year after healing, and most occur in the first 3 months after wound healing. Hence, this period after ulceration is called “remission” due to this risk of reulceration. Promoting and fostering mobility is an integral part of everyday life and is important for maintaining good physical health and health-related quality of life for all people living with diabetes. In this short perspective, we provide recommendations on how to safely increase walking activity and facilitate appropriate off-loading and monitoring in people with a recently healed foot ulcer, foot reconstruction, or partial foot amputation. Interventions include monitored activity training, dosed out in steadily increasing increments and coupled with daily skin temperature monitoring, which can identify dangerous “hotspots” prone to recurrence. By understanding areas at risk, patients are empowered to maximize ulcer-free days and to enable an improved quality of life. This perspective outlines a unified strategy to treat patients in the remission period after ulceration and aims to provide clinicians with appropriate patient recommendations based on best available evidence and expert opinion to educate their patients to ensure a safe transition to footwear and return to activity.