Search Results
Chronic decubitus ulceration of the heels is a common condition encountered by podiatric physicians, especially in diabetic patients. Very often these ulcerations can progress to osteomyelitis of the calcaneus. Many times, this in turn leads to a below-the-knee amputation. A partial calcanectomy is a viable alternative to below-the-knee amputation. A more functional limb both mechanically and cosmetically is achieved, and the morbidity and mortality associated with the calcanectomy is less than with a below-the-knee amputation. A brief overview of the history and outcomes associated with this procedure is outlined and a case utilizing a partial calcanectomy is presented. (J Am Podiatr Med Assoc 91(7): 369-372, 2001)
Wound-Care Resources on the Internet
A Second Update
An updated selection of high-quality Internet resources related to wound and ulcer care is presented. Of potential use to the podiatric medical practitioner, educator, resident, and student, some Web sites that cover hyperbaric medicine, antibiotic use, and wound and ulcer prevention are also included. These Web sites have been evaluated on the basis of their potential to enhance the practice of podiatric medicine, in addition to contributing to the educational process. Readers who require a quick reference source to wound and ulcer care may find this report useful. (J Am Podiatr Med Assoc 96(3): 264–268, 2006)
Background: High peak plantar pressures predispose to foot problems and may exacerbate existing conditions. For podiatric physicians to make educated recommendations to their patients, it is important and necessary to begin to look at different shoes and how they affect peak plantar pressure.
Methods: To determine how flip-flops change peak plantar pressure while walking, we compared peak plantar pressures in the same test subjects wearing flip-flops, wearing athletic shoes, and in bare feet. Ten women with size 7 feet and a body mass index less than 25 kg/m2 were tested with an in-shoe pressure-measurement system. These data were collected and analyzed by one-way analysis of variance and computer software.
Results: Statistically significant results were obtained for nine of the 18 comparisons. In each of these comparisons, flip-flops always demonstrated higher peak plantar pressures than athletic shoes but lower pressures than bare feet.
Conclusion: Although these data demonstrate that flip-flops have a minor protective role as a shock absorber during the gait cycle compared with pressures measured while barefoot, compared with athletic shoes, they increase peak plantar pressures, placing the foot at greater risk for pathologic abnormalities. (J Am Podiatr Med Assoc 98(5): 374–378, 2008)
The Achilles tendon of the patient with Charcot’s foot neuroarthropathy has significantly altered physical properties compared with a normal tendon. Twenty-nine Achilles tendons from patients with Charcot’s foot (n = 20) and non-Charcot’s foot controls (n = 9) were loaded onto a biomechanical testing instrument. The biomechanical properties of the Charcot and control tendons were determined and the tendons were evaluated for differences in ultimate tensile strength and elasticity (Young’s modulus). Biomechanical test data show that there is a significant difference in ultimate tensile strength and elasticity between tendons of patients with Charcot’s foot and those of non-Charcot’s controls. The term diabetic tendo Achillis equinus is introduced as a new finding in diabetic neuroarthropathy. (J Am Podiatr Med Assoc 95(3): 242–246, 2005)
Maggot Therapy in “Lower-Extremity Hospice” Wound Care
Fewer Amputations and More Antibiotic-Free Days
We sought to assess, in a case-control model, the potential efficacy of maggot debridement therapy in 60 nonambulatory patients (mean ± SD age, 72.2 ± 6.8 years) with neuroischemic diabetic foot wounds (University of Texas grade C or D wounds below the malleoli) and peripheral vascular disease. Twenty-seven of these patients (45%) healed during 6 months of review. There was no significant difference in the proportion of patients healing in the maggot debridement therapy versus control group (57% versus 33%). Of patients who healed, time to healing was significantly shorter in the maggot therapy than in the control group (18.5 ± 4.8 versus 22.4 ± 4.4 weeks). Approximately one in five patients (22%) underwent a high-level (above-the-foot) amputation. Patients in the control group were three times as likely to undergo amputation (33% versus 10%). Although there was no significant difference in infection prevalence in patients undergoing maggot therapy versus controls (80% versus 60%), there were significantly more antibiotic-free days during follow-up in patients who received maggot therapy (126.8 ± 30.3 versus 81.9 ± 42.1 days). Maggot debridement therapy reduces short-term morbidity in nonambulatory patients with diabetic foot wounds. (J Am Podiatr Med Assoc 95(3): 254–257, 2005)
Cooling the Foot to Prevent Diabetic Foot Wounds
A Proof-of-Concept Trial
The etiology of neuropathic diabetic foot wounds can be summarized by the following formula: pressure × cycles of repetitive stress = ulceration. The final pathway to ulceration consists of an inflammatory response, leading to tissue breakdown. Mitigation of this response might reduce the risk of ulceration. This proof-of-concept trial evaluates whether simple cooling of the foot can safely reduce the time to thermal equilibrium after activity. After a 15-min brisk walk, the six nondiabetic volunteers enrolled were randomly assigned to receive either air cooling or a 10-min 55°F cool water bath followed by air cooling. The process was then repeated with the intervention reversed, allowing subjects to serve as their own controls. There was a rise in mean ± SD skin temperature after 15 min of activity versus preactivity levels (87.8° ± 3.9° versus 79° ± 2.2° F; P = .0001). Water cooling immediately brought the foot to a point cooler than preactivity levels for all subjects, whereas air cooling required an average of nearly 17 min to do so. Ten minutes of cooling required a mean ± SD of 26.2 ± 5.9 min to warm to preactivity levels. No adverse effects resulted from the intervention. We conclude that cooling the foot may be a safe and effective method of reducing inflammation and may serve as a prophylactic or interventional tool to reduce skin breakdown risk. (J Am Podiatr Med Assoc 95(2): 103–107, 2005)