Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: Benjamin A. Lipsky x
- Refine by access: All Content x
Diabetic foot infections are a common and often serious problem, accounting for more hospital bed days than any other complication of diabetes. Despite advances in antibiotic drug therapy and surgical management, these infections continue to be a major risk factor for amputations of the lower extremity. Although a variety of wound size and depth classification systems have been adapted for use in codifying diabetic foot ulcerations, none are specific to infection. In 2003, the International Working Group on the Diabetic Foot developed guidelines for managing diabetic foot infections, including the first severity scale specific to these infections. The following year, the Infectious Diseases Society of America published their diabetic foot infection guidelines. Herein, we review some of the critical points from the Executive Summary of the Infectious Diseases Society of America document and provide a commentary following each issue to update the reader on any pertinent changes that have occurred since publication of the original document in 2004.
The importance of a multidisciplinary limb salvage team, apropos of this special issue jointly published by the American Podiatric Medical Association and the Society for Vascular Surgery, cannot be overstated. (J Am Podiatr Med Assoc 100(5): 395–400, 2010)
Topical Application of a Gentamicin-Collagen Sponge Combined with Systemic Antibiotic Therapy for the Treatment of Diabetic Foot Infections of Moderate Severity
A Randomized, Controlled, Multicenter Clinical Trial
Background:
The aim of this pilot study was to determine the safety and potential benefit of adding a topical gentamicin-collagen sponge to standard of care (systemic antibiotic therapy plus standard diabetic wound management) for treating diabetic foot infections of moderate severity.
Methods:
We randomized 56 patients with moderately infected diabetic foot ulcers in a 2:1 ratio to receive standard of care plus the gentamicin-collagen sponge (treatment group, n = 38) or standard of care only (control group, n = 18) for up to 28 days of treatment. Investigators performed clinical, microbiological, and safety assessments at regularly scheduled intervals and collected pharmacokinetic samples from patients treated with the gentamicin-collagen sponge. Test of cure was clinically assessed 14 days after all antibiotic therapy was stopped.
Results:
On treatment day 7, we noted clinical cure in no treatment patients and three control patients (P = .017). However, for evaluable patients at the test-of-cure visit, the treatment group had a significantly higher proportion of patients with clinical cure than did the control group (22 of 22 [100.0%] versus 7 of 10 [70.0%]; P =.024). Patients in the treatment group also had a higher rate of eradication of baseline pathogens at all visits (P ≤ .038) and a reduced time to pathogen eradication (P < .001). Safety data were similar for both groups.
Conclusions:
Topical application of the gentamicin-collagen sponge seems safe and may improve clinical and microbiological outcomes of diabetic foot infections of moderate severity when combined with standard of care. These pilot data suggest that a larger trial of this treatment is warranted. (J Am Podiatr Med Assoc 102(3): 223-232, 2012)
Background:
Selecting empirical therapy for a diabetic foot infection (DFI) requires knowing how likely infection with Pseudomonas aeruginosa is in a particular patient. We designed this study to define the risk factors associated with P aeruginosa in DFI.
Methods:
We performed a preplanned microbiological subanalysis of data from a study assessing the effects of treatment with intralesional epidermal growth factor for diabetic foot wounds in patients in Turkey between January 1, 2012, and December 31, 2013. Patients were screened for risk factors, and the data of enrolled individuals were recorded in custom-designed patient data forms. Factors affecting P aeruginosa isolation were evaluated by univariate and multivariate logistic regression analyses, with statistical significance set at P < .05.
Results:
There were 174 patients enrolled in the main study. Statistical analysis was performed in 90 evaluable patients for whom we had microbiological assessments. Cultures were sterile in 19 patients, and 89 bacterial isolates were found in the other 71. The most frequently isolated bacteria were P aeruginosa (n = 23, 25.8%) and Staphylococcus aureus (n = 12, 13.5%). Previous lower-extremity amputation and a history of using active wound dressings were the only statistically significant independent risk factors for the isolation of P aeruginosa in these DFIs.
Conclusions:
This retrospective study provides some information on risk factors for infection with this difficult pathogen in patients with DFI. We need prospective studies in various parts of the world to better define this issue.
An Assessment of Intralesional Epidermal Growth Factor for Treating Diabetic Foot Wounds
The First Experiences in Turkey
Background:
Intralesional epidermal growth factor (EGF) has been available as a medication in Turkey since 2012. We present the results of our experience using intralesional EGF in Turkey for patients with diabetic foot wounds.
Methods:
A total of 174 patients from 25 Turkish medical centers were evaluated for this retrospective study. We recorded the data on enrolled individuals on custom-designed patient follow-up forms. Patients received intralesional injections of 75 μg of EGF three times per week and were monitored daily for adverse reactions to treatment. Patients were followed up for varying periods after termination of EGF treatments.
Results:
Median treatment duration was 4 weeks, and median frequency of EGF administration was 12 doses. Complete response (granulation tissue >75% or wound closure) was observed in 116 patients (66.7%). Wounds closed with only EGF administration in 81 patients (46.6%) and in conjunction with various surgical interventions after EGF administration in 65 patients (37.3%). Overall, 146 of the wounds (83.9%) were closed at the end of therapy. Five patients (2.9%) required major amputation. Adverse effects were reported in 97 patients (55.7%).
Conclusions:
In patients with diabetic foot ulcer who received standard care, additional intralesional EGF application after infection control provided high healing rates with low amputation rates.
Foot infections are a common and serious problem in persons with diabetes. Diabetic foot infections (DFIs) typically begin in a wound, most often a neuropathic ulceration. While all wounds are colonized with microorganisms, the presence of infection is defined by ≥2 classic findings of inflammation or purulence. Infections are then classified into mild (superficial and limited in size and depth), moderate (deeper or more extensive), or severe (accompanied by systemic signs or metabolic perturbations). This classification system, along with a vascular assessment, helps determine which patients should be hospitalized, which may require special imaging procedures or surgical interventions, and which will require amputation. Most DFIs are polymicrobial, with aerobic gram-positive cocci (GPC), and especially staphylococci, the most common causative organisms. Aerobic gram-negative bacilli are frequently copathogens in infections that are chronic or follow antibiotic treatment, and obligate anaerobes may be copathogens in ischemic or necrotic wounds.
Wounds without evidence of soft tissue or bone infection do not require antibiotic therapy. For infected wounds, obtain a post-debridement specimen (preferably of tissue) for aerobic and anaerobic culture. Empiric antibiotic therapy can be narrowly targeted at GPC in many acutely infected patients, but those at risk for infection with antibiotic-resistant organisms or with chronic, previously treated, or severe infections usually require broader spectrum regimens. Imaging is helpful in most DFIs; plain radiographs may be sufficient, but magnetic resonance imaging is far more sensitive and specific. Osteomyelitis occurs in many diabetic patients with a foot wound and can be difficult to diagnose (optimally defined by bone culture and histology) and treat (often requiring surgical debridement or resection, and/or prolonged antibiotic therapy). Most DFIs require some surgical intervention, ranging from minor (debridement) to major (resection, amputation). Wounds must also be properly dressed and off-loaded of pressure, and patients need regular follow-up. An ischemic foot may require revascularization, and some nonresponding patients may benefit from selected adjunctive measures. Employing multidisciplinary foot teams improves outcomes. Clinicians and healthcare organizations should attempt to monitor, and thereby improve, their outcomes and processes in caring for DFIs.