Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: C Muehleman x
- Refine by access: All Content x
Articular hyaline cartilage, though a metabolically active tissue, has limited capacity for repair. Though the integrity of the cartilage is dependent upon a certain level of force placed upon it, excessive force leads to damage. It is when the breakdown of the cartilage exceeds the capacity of the cartilage for repair that osteoarthritis results. At present, pharmacologic treatment of osteoarthritis is focused toward the control of pain and stiffness. This treatment, however, masks the symptoms of the disease and effectively allows the patient to do further damage to the joint.
Articular hyaline cartilage is of interest to both the clinician and the basic scientist because of its unique physical and chemical properties which are a consequence of its biochemical composition. Although it is a tissue which is hypocellular, avascular, and also lacks nerves and lymphatics, it is active in synthesis and degradation. Articular cartilage responds to the forces to which it is subjected and, in this way, maintains its integrity as long as those forces do not exceed the tissue's capacity for repair or permanently change the biologic response of the cells.
In summary, technological advances in culturing epidermis for the purpose of grafting allow this approach in the treatment of cutaneous wounds. Certainly, full- and split-thickness autografts offer immediate availability and permanent wound coverage, but they also involve a large, painful donor site. Cultured epidermal autografts can provide permanent wound coverage, but the delay required for cultivation of confluent sheets of keratinocytes makes them somewhat less desirable. Both allografts and cultured allografts, on the other hand, are available for immediate use, but the possibility of infectious disease transmission may be a concern. In any case, all types of skin grafts function as biological dressings that promote the proliferation of the host's epidermis and, thus, facilitate the ability of the patient's skin to repair itself.
The primary aim of this study was to determine the predictive value of the bone mineral density of the calcaneus for fracture of the metatarsals. The authors report a strong positive correlation between the bone mineral density of the calcaneus and the four-point bending strength of each of the five metatarsals (r2 = 0.76, 0.64, 0.70, 0.68, and 0.78 for metatarsals 1 through 5, respectively). In addition, the relative strengths of the metatarsals and the correlation with their in vivo loads during gait as previously reported in the literature are discussed.
Although there is sparse information concerning the properties of foot-joint cartilages, knowledge of the morphology and biochemistry of these cartilages is important in the study of changes that occur in the development of osteoarthritis. Normal first and fifth metatarsophalangeal joints were chosen for comparison because of the difference between these two joints in the prevalence of osteoarthritis, particularly with advancing age. The authors' study shows that there is no age-related decrease in articular-cartilage thickness; however, there is an age-related decrease in the chondrocyte density in the superficial zone in both joints. There is, however, a difference between the two joints in the level of expression of matrix-degrading enzymes. This difference may indicate differences in specific chondrocyte activity that precedes or accompanies the development of osteoarthritis or other degenerative morphological changes.