Search Results
You are looking at 1 - 8 of 8 items for
- Author or Editor: Deanna C. Hall x
- Refine by access: All Content x
Abstract
Drug based treatment of superficial fungal infections, such as onychomycosis, is not the only defense. Sanitization of footwear such as shoes, socks/stockings, and other textiles is integral to the prevention of recurrence, and reduction of spread for superficial fungal mycoses. The goal of this review was to examine the available methods of sanitization for footwear and textiles against superficial fungal infections. A systematic literature search of various sanitization devices and methods that could be applied to footwear and textiles using PubMed, Scopus, and MEDLINE was performed. Fifty-four studies were found relevant to the different methodologies, devices, and techniques of sanitization as it pertains to superficial fungal infections of the feet. These included topics of basic sanitization, antifungal and antimicrobial materials, sanitization chemicals and powder, laundering, ultraviolet, ozone, non-thermal plasma, microwave radiation, essential oils, and natural plant extracts. In management of onychomycosis it is necessary to think beyond treatment of the nail, as infections enter through the skin. Those prone to onychomycosis should examine their environment, including surfaces, shoes, and socks, and ensure that proper sanitization is implemented.
Drug-based treatment of superficial fungal infections, such as onychomycosis, is not the only defense. Sanitization of footwear such as shoes, socks/stockings, and other textiles is integral to the prevention of recurrence and reduction of spread for superficial fungal mycoses. The goal of this review was to examine the available methods of sanitization for footwear and textiles against superficial fungal infections. A systematic literature search of various sanitization devices and methods that could be applied to footwear and textiles using PubMed, Scopus, and MEDLINE was performed. Fifty-four studies were found relevant to the different methodologies, devices, and techniques of sanitization as they pertain to superficial fungal infections of the feet. These included topics of basic sanitization, antifungal and antimicrobial materials, sanitization chemicals and powder, laundering, ultraviolet, ozone, nonthermal plasma, microwave radiation, essential oils, and natural plant extracts. In the management of onychomycosis, it is necessary to think beyond treatment of the nail, as infections enter through the skin. Those prone to onychomycosis should examine their environment, including surfaces, shoes, and socks, and ensure that proper sanitization is implemented.
Onychomycosis is the most common nail disorder, with a global prevalence of approximately 5.5%. It is difficult to cure on both short-term and long-term bases. The most common treatments include the use of oral or topical antifungals. Recurrent infections are common, and the use of systemic oral antifungals raises concerns of hepatotoxicity and drug-drug interactions, particularly in patients with polypharmacy. A number of device-based treatments have been developed for onychomycosis treatment, to either directly treat fungal infection or act as adjuvants to increase the efficacy of topical and oral agents. These device-based treatments have been increasing in popularity over the past several years, and include photodynamic therapy, iontophoresis, plasma, microwaves, ultrasound, nail drilling, and lasers. Some, such as photodynamic therapy, provide more direct treatment, whereas others, such as ultrasound and nail drilling, aid the uptake of traditional antifungals. We conducted a systematic literature search investigating the efficacy of these device-based treatment methods. From an initial result of 841 studies, 26 were deemed relevant to the use of device-based treatments of onychomycosis. This review examines these methods and provides insight into the state of clinical research for each. Many device-based treatments show promising results, but require more research to assess their true impact on onychomycosis.