Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: MS Klein x
- Refine by access: All Content x
Background: Exercise has not been studied extensively in persons with active neuropathic diabetic foot wounds, primarily because a device does not exist that allows patients to exercise while sufficiently off-loading pressure at the ulcer site. The purpose of this project was to demonstrate a device that reduces cycling plantar forefoot pressure.
Methods: Ten healthy participants rode a recumbent bicycle under three cycling conditions. While the left foot interaction remained constant with a standard gym shoe and pedal, the right foot was exposed to a control condition with standard gym shoe and pedal, gym shoe and specialized cleat, and gym shoe with an off-loading insole and specialized cleat. Pressure and contact area of the plantar aspect of the feet were recorded for a 10-sec interval once during each minute of each condition’s 7-min trial.
Results: The off-loading insole and specialized cleat condition yielded significantly lower (P < .01) peak pressure, contact area, and pressure–time integral values in the forefoot than the specialized cleat condition with gym shoe, which yielded significantly lower values (P < .01) than the standard gym shoe and pedal.
Conclusion: Modifications to footwear may alter plantar forefoot pressures, contact area, and pressure–time integrals while cycling. The CLEAR Cleat could play a significant role in the facilitation of fitness in patients with (or at high risk for) neuropathic wounds. (J Am Podiatr Med Assoc 98(4): 261–267, 2008)
Hallux Valgus Surgery May Produce Early Improvements in Balance Control
Results of a Cross-Sectional Pilot Study
Background:
Hallux valgus (HV) is associated with poorer performance during gait and balance tasks and is an independent risk factor for falls in older adults. We sought to assess whether corrective HV surgery improves gait and balance.
Methods:
Using a cross-sectional study design, gait and static balance data were obtained from 40 adults: 19 patients with HV only (preoperative group), 10 patients who recently underwent successful HV surgery (postoperative group), and 11 control participants. Assessments were made in the clinic using body-worn sensors.
Results:
Patients in the preoperative group generally demonstrated poorer static balance control compared with the other two groups. Despite similar age and body mass index, postoperative patients exhibited 29% and 63% less center of mass sway than preoperative patients during double-and single-support balance assessments, respectively (analysis of variance P =.17 and P =.14, respectively [both eyes open condition]). Overall, gait performance was similar among the groups, except for speed during gait initiation, where lower speeds were encountered in the postoperative group compared with the preoperative group (Scheffe P = .049).
Conclusions:
This study provides supportive evidence regarding the benefits of corrective lower-extremity surgery on certain aspects of balance control. Patients seem to demonstrate early improvements in static balance after corrective HV surgery, whereas gait improvements may require a longer recovery time. Further research using a longitudinal study design and a larger sample size capable of assessing the long-term effects of HV surgical correction on balance and gait is probably warranted. (J Am Podiatr Med Assoc 103(6): 489–497, 2013)