Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Metin Yavuz x
- Refine by access: All Content x
Background: Foot blisters are common and painful nuisances in competitive sports and in military service. The pathogenesis of the problem is related to excessive frictional forces experienced on or under the foot. The incidence of foot blisters in marathon runners can reach 39%. Similarly, up to 42% of cadets in Reserve Officers’ Training Corps camps might be prone to foot blisters. Although the problem usually disappears within 5 days, a single blister might be a major problem in competitive sports or in a wilderness setting. Military training and combat effectiveness might also be compromised by foot blisters. This study sought to reveal the distribution of plantar shear forces in athletic individuals and its relevance to foot blisters.
Methods: Three groups of 11 participants each were studied: blister, adult control, and pediatric control. A custom-built shear and pressure platform was used to collect plantar pressure and shear data while the participants walked over the device. Data were analyzed with repeated-measures analysis of variance.
Results: The blister group had significantly increased pressure and shear stress magnitudes compared with the other groups, although no significant group-site interaction was found. The shear-time integral values were increased approximately 50% at specific sites of the athletic feet, suggesting that contact time may play a role in blister formation.
Conclusions: The biomechanical interaction on the plantar surface of a blister-prone person is different from that of individuals who are less prone to the problem. (J Am Podiatr Med Assoc 100(2): 116–120, 2010)
Plantar Shear Stress Distribution in Patients with Rheumatoid Arthritis
Relevance to Foot Pain
Background: Rheumatoid arthritis is an autoimmune disease that causes chronic, progressive joint inflammation; it commonly affects the joints of the feet. Biomechanical alterations and daily pain in the foot are the common outcomes of the disease. Earlier studies focusing on plantar pressure in such patients reported increased vertical loading along with peak pressure-pain associations. However, footwear designed according to the pressure profiles did not relieve symptoms effectively. We examined plantar shear and pressure distribution in patients with rheumatoid arthritis and compared the findings with those of controls, and we investigated a potential relationship between foot pain and local shear stresses.
Methods: A custom-built platform was used to collect plantar pressure and shear stress data from nine patients with rheumatoid arthritis and 14 control participants. Seven patients reported the presence of pain under their feet. Pressure-time and shear-time integral values were also calculated.
Results: Peak pressure, pressure-time integral, resultant shear-time integral, and mediolateral shear stress magnitudes were higher in the complication group (P < .05). An association between peak shear-time integral and maximum pain locations was observed.
Conclusions: Increased mediolateral shear stresses under the rheumatoid foot might be attributable to gait instability in such patients. A correlation between the locations of maximum shear-time integral and pain indicate the clinical significance of plantar shear in patients with rheumatoid arthritis. (J Am Podiatr Med Assoc 100(4): 265–269, 2010)
Background:
Diabetic foot ulcers (DFUs) are a major burden to patients and to the health-care systems of many countries. To prevent or treat ulcers more effectively, predictive biomarkers are needed. We examined temperature as a biomarker and as a causative factor in ulcer development.
Methods:
Thirty-seven individuals with diabetes were enrolled in this observational case-control study: nine with diabetic neuropathy and ulcer history (DFU), 14 with diabetic neuropathy (DN), and 14 nonneuropathic control participants (DC). Resting barefoot plantar temperatures were recorded using an infrared thermal camera. Mean temperatures were determined in four anatomical regions—hallux and medial, central, and lateral forefoot—and separate linear models with specified contrasts among the DFU, DN, and DC groups were set to reveal mean differences for each foot region while controlling for group characteristics.
Results:
The mean temperature reading in each foot region was higher than 30.0°C in the DFU and DN groups and lower than 30.0°C in the DC group. Mean differences were greatest between the DFU and DC groups, ranging from 3.2°C in the medial forefoot to 4.9°C in the hallux.
Conclusions:
Increased plantar temperatures in individuals with a history of ulcers may include acute temperature increases from plantar stresses, chronic inflammation from prolonged stresses, and impairment in temperature regulation from autonomic neuropathy. Diabetic foot temperatures, particularly in patients with previous ulcers, may easily reach hazard thresholds indicated by previous pressure ulcer studies. The results necessitate further exploration of temperature in the diabetic foot and how it may contribute to ulceration.