Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Michaela E Khan x
- Refine by access: All Content x
Background: Studies of arch height index (AHI), arch rigidity index (ARI), and arch stiffness have primarily focused on healthy populations. Normative values of the aforementioned measurements in a pathologic sample may be useful in identifying relationships between arch structure and pathology.
Methods: AHI was obtained bilaterally at 10% and 90% weightbearing conditions using the AHI measurement system. ARI and arch stiffness were calculated using AHI measurements. Dependent t tests compared right and left, dominant and nondominant, and injured and noninjured limbs. Dominant feet were compared between sexes using independent t tests. Relationships between arch stiffness and subcategories were examined using the coefficient of determination (R2). One-way analyses of variance determined differences between arch structure and number of pathologies or body mass index (BMI).
Results: A total of 110 participants reported one (n = 55), two (n = 38), or three or more (n = 17) pathologies. Plantar fasciitis (n = 31) and hallux valgus (n = 28) were the most common. AHI, ARI, and arch stiffness did not differ between limbs or sexes for any comparisons. Between subgroups of BMI and number of pathologies, BMI influenced AHI (10% weightbearing) and arch stiffness (P < .05). Arch stiffness showed a weak relationship to AHI, where a higher AHI was associated with a stiffer arch (R2 = 0.06).
Conclusions: Normative arch structure values were established in a pathologic sample with a large incidence of plantar fasciitis and hallux valgus. Understanding relationships between arch structure and pathology is helpful for clinicians and researchers.
BACKGROUND: Normative studies on the Arch Height Index (AHI), Arch Rigidity Index (ARI), and arch stiffness have primarily focused on healthy populations, with little consideration of pathology. The purpose of this study was to create a normative sample of the aforementioned measurements in a pathological sample and to identify relationships between arch structure measurements and pathology. METHODS: AHI was obtained bilaterally at 10% and 90% weightbearing conditions using the Arch Height Index Measurement System (AHIMS). ARI and arch stiffness were calculated using AHI measurements. Dependent t-tests compared right and left, dominant and non-dominant, and injured and non-injured limbs. Measurements of the dominant foot were compared between sexes using independent t-tests. Relationships between arch stiffness and age, sex, and AHI were examined using the coefficient of determination (R2). One-way ANOVAs were used to determine differences between arch structure measurements and number of pathologies or BMI. RESULTS: A total of 110 participants reported either one (n=55), two (n=38), or three or more (n=17) pathologies. Plantar fasciitis (n=31) and hallux valgus (n=28) were the most commonly reported primary concerns. AHI, ARI, and arch stiffness did not differ between limbs for any comparisons, nor between sexes. Between subgroups of BMI and number of pathologies, no differences exist in AHI or ARI; however, BMI was found to have an impact on AHI (10%WB) and arch stiffness (p<.05). Arch stiffness showed a weak relationship to AHI, where a higher AHI was associated with a stiffer arch (R2=0.06). CONCLUSIONS: Normative AHI, ARI and arch stiffness values were established in a pathological sample with a large incidence of plantar fasciitis and hallux valgus. Findings suggest relationships between arch stiffness and both BMI and arch height; however, few trends were noted in AHI and ARI. Determining relationships between arch structure and pathology is helpful for both clinicians and researchers.