Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: Robert D. Phillips x
- Refine by access: All Content x
The reliability of biomechanical measurements of the lower extremities, as they are commonly used in podiatric practice, was quantified by means of intraclass correlation coefficients (ICCs). This was done not only to evaluate interrater and intrarater reliability but also to provide an estimate for the accuracy of the measurements. The measurement protocol involved 30 asymptomatic subjects and five raters of varying experience. Each subject was measured twice by the same rater, with the retest immediately following the test. The study demonstrated that the interrater ICCs were quite low (≤0.51), except for the measurements of relaxed calcaneal stance position and forefoot varus (both 0.61 and 0.62 for left and right, respectively). However, the intrarater ICCs were relatively high (>0.8) for most raters and measurement variables. Measurement accuracy was moderate between raters. (J Am Podiatr Med Assoc 92(6): 317-326, 2002)
In Vivo Forces in the Plantar Fascia During the Stance Phase of Gait
Sequential Release of the Plantar Fascia
Plantar fasciotomies have become commonplace in podiatric and orthopedic medicine for the treatment of plantar fasciitis. However, several complications have been associated with plantar fascial release. It has been speculated that the cause of these complications is excessive release of the plantar fascia. The aim of this project was to determine whether the amount of fascia released, from medial to lateral, causes a significant increase in force in the remaining fascia. A dynamic loading system was developed that allowed a cadaveric specimen to replicate the stance phase of gait. The system was capable of applying appropriate muscle forces to the extrinsic tendons on the foot and replicating the in vivo timing of the muscle activity while applying force to the tibia and fibula from heel strike to toe-off. As the plantar fascia was sequentially released from medial to lateral, from intact to 33% released to 66% released, the real-time force and the duration of force in the remaining fascia increased significantly, and the force was shifted later in propulsion. In addition, the subtalar joint was unable to resupinate as the amount of fascia release increased, indicating a direct relationship between the medial band of the plantar fascia and resupination of the subtalar joint during late midstance and propulsion. (J Am Podiatr Med Assoc 93(6): 429-442, 2003)